These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21595919)

  • 21. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite.
    Nadai C; Campanaro S; Giacomini A; Corich V
    Int J Food Microbiol; 2015 Dec; 215():49-56. PubMed ID: 26325600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.
    Pornkamol U; Franzen CJ
    Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.
    Kong II; Turner TL; Kim H; Kim SR; Jin YS
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29325040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.
    Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S
    BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
    Teh KY; Lutz AE
    J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstruction and analysis of genome-scale metabolic model of weak Crabtree positive yeast Lachancea kluyveri.
    Nanda P; Patra P; Das M; Ghosh A
    Sci Rep; 2020 Oct; 10(1):16314. PubMed ID: 33004914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis.
    Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 100 Years Later, What Is New in Glycerol Bioproduction?
    Semkiv MV; Ruchala J; Dmytruk KV; Sibirny AA
    Trends Biotechnol; 2020 Aug; 38(8):907-916. PubMed ID: 32584768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning applied for metabolic flux-based control of micro-aerated fermentations in bioreactors.
    Mesquita TJB; Campani G; Giordano RC; Zangirolami TC; Horta ACL
    Biotechnol Bioeng; 2021 May; 118(5):2076-2091. PubMed ID: 33615444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico design of anaerobic growth-coupled product formation in Escherichia coli: experimental validation using a simple polyol, glycerol.
    Balagurunathan B; Jain VK; Tear CJ; Lim CY; Zhao H
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):361-372. PubMed ID: 27796571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism.
    Nookaew I; Jewett MC; Meechai A; Thammarongtham C; Laoteng K; Cheevadhanarak S; Nielsen J; Bhumiratana S
    BMC Syst Biol; 2008 Aug; 2():71. PubMed ID: 18687109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation.
    Teixeira MC; Godinho CP; Cabrito TR; Mira NP; Sá-Correia I
    Microb Cell Fact; 2012 Jul; 11():98. PubMed ID: 22839110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast Genome-Scale Metabolic Models for Simulating Genotype-Phenotype Relations.
    Castillo S; Patil KR; Jouhten P
    Prog Mol Subcell Biol; 2019; 58():111-133. PubMed ID: 30911891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation.
    Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomass content governs fermentation rate in nitrogen-deficient wine musts.
    Varela C; Pizarro F; Agosin E
    Appl Environ Microbiol; 2004 Jun; 70(6):3392-400. PubMed ID: 15184136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.