These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2159595)

  • 41. Influence of tricyclic antidepressants on the adenylate cyclase-phosphodiesterase system in the rat cortex.
    Palmer GC
    Neuropharmacology; 1976 Jan; 15(1):1-7. PubMed ID: 176608
    [No Abstract]   [Full Text] [Related]  

  • 42. Evidence indicating that the glucagon-induced increase in cytoplasmic free Ca2+ concentration in hepatocytes is mediated by an increase in cyclic AMP concentration.
    Staddon JM; Hansford RG
    Eur J Biochem; 1989 Jan; 179(1):47-52. PubMed ID: 2537201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isoprenaline stimulation of cyclic AMP production by isolated cells from adult rat myocardium.
    Powell T; Twist VW
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1218-25. PubMed ID: 186060
    [No Abstract]   [Full Text] [Related]  

  • 44. Influence of a phosphodiesterase inhibitor on the chronotropic effects of glucagon and norepinephrine in fetal mouse hearts.
    Wildenthal K; Wakeland JR
    J Pharmacol Exp Ther; 1979 Nov; 211(2):350-2. PubMed ID: 574159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An endogenous inhibitor protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase.
    Wallace RW; Lynch TJ; Tallant EA; Cheung WY
    Arch Biochem Biophys; 1978 Apr; 187(2):328-34. PubMed ID: 208465
    [No Abstract]   [Full Text] [Related]  

  • 46. Regulation of myocardial cyclic AMP by isoproterenol, glucagon and acetylcholine.
    Lee TP; Kuo JF; Greengard P
    Biochem Biophys Res Commun; 1971 Nov; 45(4):991-7. PubMed ID: 4330147
    [No Abstract]   [Full Text] [Related]  

  • 47. Epinephrine- and glucagon-stimulated cardiac adenylyl cyclase activity. Regulation by endogenous factors.
    Sanders RB; Thompson WJ; Robison GA
    Biochim Biophys Acta; 1977 Jun; 498(1):10-20. PubMed ID: 884141
    [No Abstract]   [Full Text] [Related]  

  • 48. [Pathological reaction of the adenyl-cyclase-cAMP-system on the glucagon dosage in uremia].
    Vlachoyannis J; Hartenstein-Pettla T; Meyer C; Meyer G; Brecht HM; Haupt E; Schoeppe W
    Verh Dtsch Ges Inn Med; 1976; 82 Pt 2():1494-7. PubMed ID: 1030028
    [No Abstract]   [Full Text] [Related]  

  • 49. Studies on the mechanism for the isoproterenol-induced stimulation of cardiac glucose-6-phosphate dehydrogenase.
    Zimmer HG; Ibel H
    FEBS Lett; 1979 Oct; 106(2):335-7. PubMed ID: 227735
    [No Abstract]   [Full Text] [Related]  

  • 50. [Biological method of blood plasma glucagon determination].
    Kniazeva AP; Liubarskaia SG
    Probl Endokrinol (Mosk); 1980; 26(2):45-7. PubMed ID: 6246483
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insulin stimulates generation of intracellular mediators in rat heart.
    Macaulay SL; Macaulay JO; Jarett L
    Arch Biochem Biophys; 1985 Sep; 241(2):432-7. PubMed ID: 3899011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Clinical use of glucagon following cardiac surgery (author's transl)].
    Sakamoto T; Yamada T; Tsukuura T; Koyanagi H
    Kyobu Geka; 1977 Oct; 30(10):824-7. PubMed ID: 592587
    [No Abstract]   [Full Text] [Related]  

  • 53. The essential role of the imidazole group of glucagon in its biological function.
    Epand RM; Epand RF; Grey V
    Arch Biochem Biophys; 1973 Jan; 154(1):132-6. PubMed ID: 4347675
    [No Abstract]   [Full Text] [Related]  

  • 54. Glucagon signaling in the heart: Activation or inhibition?
    Pocai A
    Mol Metab; 2015 Feb; 4(2):81-2. PubMed ID: 25685695
    [No Abstract]   [Full Text] [Related]  

  • 55. Glucagon therapy for beta-blocker overdose.
    Peterson CD; Leeder JS; Sterner S
    Drug Intell Clin Pharm; 1984 May; 18(5):394-8. PubMed ID: 6144498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glucagon and Its Receptors in the Mammalian Heart.
    Neumann J; Hofmann B; Dhein S; Gergs U
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases.
    Sadek MS; Cachorro E; El-Armouche A; Kämmerer S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors.
    Lahnwong C; Chattipakorn SC; Chattipakorn N
    Cardiovasc Diabetol; 2018 Jul; 17(1):101. PubMed ID: 29991346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ZP2495 Protects against Myocardial Ischemia/Reperfusion Injury in Diabetic Mice through Improvement of Cardiac Metabolism and Mitochondrial Function: The Possible Involvement of AMPK-FoxO3a Signal Pathway.
    Li S; Wu H; Han D; Zhang M; Li N; Yu W; Sun D; Sun Z; Ma S; Gao E; Li C; Shen M; Cao F
    Oxid Med Cell Longev; 2018; 2018():6451902. PubMed ID: 29576852
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Endothelial Restoration of Receptor Activity-Modifying Protein 2 Is Sufficient to Rescue Lethality, but Survivors Develop Dilated Cardiomyopathy.
    Kechele DO; Dunworth WP; Trincot CE; Wetzel-Strong SE; Li M; Ma H; Liu J; Caron KM
    Hypertension; 2016 Sep; 68(3):667-77. PubMed ID: 27402918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.