BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 2159596)

  • 21. Chronic peripheral nerve section results in a rearrangement of the central axonal arborizations of axotomized A beta primary afferent neurons in the rat spinal cord.
    Shortland P; Woolf CJ
    J Comp Neurol; 1993 Apr; 330(1):65-82. PubMed ID: 8468404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine structure of dorsal root terminals in the dorsal horn of the frog spinal cord.
    Lévai G; Matesz C; Székely G
    Acta Biol Acad Sci Hung; 1982; 33(2-3):231-46. PubMed ID: 6983799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time course of dorsal root axon regeneration into transplants of fetal spinal cord: an electron microscopic study.
    Itoh Y; Sugawara T; Kowada M; Tessler A
    Exp Neurol; 1993 Sep; 123(1):133-46. PubMed ID: 8405273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic organization of anomalous retinal projections to the somatosensory and auditory thalamus: target-controlled morphogenesis of axon terminals and synaptic glomeruli.
    Campbell G; Frost DO
    J Comp Neurol; 1988 Jun; 272(3):383-408. PubMed ID: 2843579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructure of descending serotoninergic axonal endings in layers I and II of the dorsal horn.
    Ruda M; Allen B; Gobel S
    J Physiol (Paris); 1981; 77(2-3):205-9. PubMed ID: 7288639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of calcitonin gene-related peptide-immunoreactive terminals in the primate dorsal horn.
    Carlton SM; McNeill DL; Chung K; Coggeshall RE
    J Comp Neurol; 1988 Oct; 276(4):527-36. PubMed ID: 3264296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization.
    Mize RR; Horner LH
    J Comp Neurol; 1984 Apr; 224(4):579-90. PubMed ID: 6725632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastructural morphology, synaptic relationships, and CGRP immunoreactivity of physiologically identified C-fiber terminals in the monkey spinal cord.
    Alvarez FJ; Kavookjian AM; Light AR
    J Comp Neurol; 1993 Mar; 329(4):472-90. PubMed ID: 7681070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The terminations of corticospinal tract axons in the macaque monkey.
    Ralston DD; Ralston HJ
    J Comp Neurol; 1985 Dec; 242(3):325-37. PubMed ID: 2418074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Possible morphological substrates for GABA-mediated presynaptic inhibition in the lamprey spinal cord.
    Christenson J; Shupliakov O; Cullheim S; Grillner S
    J Comp Neurol; 1993 Feb; 328(4):463-72. PubMed ID: 8429129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capsaicin-induced neuronal degeneration: silver impregnation of cell bodies, axons, and terminals in the central nervous system of the adult rat.
    Ritter S; Dinh TT
    J Comp Neurol; 1988 May; 271(1):79-90. PubMed ID: 2454961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regeneration by supernumerary axons with synaptic terminals in spinal motoneurons of cats.
    Havton L; Kellerth JO
    Nature; 1987 Feb 19-25; 325(6106):711-4. PubMed ID: 3821862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peripheral nerve injury induces reorganization of galanin-containing afferents in the superficial dorsal horn of monkey spinal cord.
    Wang LH; Lu YJ; Bao L; Zhang X
    Eur J Neurosci; 2007 Feb; 25(4):1087-96. PubMed ID: 17331205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient loss of terminals from non-peptidergic nociceptive fibers in the substantia gelatinosa of spinal cord following chronic constriction injury of the sciatic nerve.
    Bailey AL; Ribeiro-da-Silva A
    Neuroscience; 2006; 138(2):675-90. PubMed ID: 16413131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine structure of normal and degenerating primary afferent boutons associated with characterized spinocervical tract neurons in the cat.
    Maxwell DJ; Fyffe RE; Brown AG
    Neuroscience; 1984 May; 12(1):151-63. PubMed ID: 6462444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasticity of complex terminals in lamina II in partially deafferented spinal cord: the cat spared root preparation.
    Zhang B; Goldberger ME; Wu LF; Murray M
    Exp Neurol; 1995 Apr; 132(2):186-93. PubMed ID: 7789458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytochemical evidence for vesicular storage of glutamate in cat spinocervical and cervicothalamic tract terminals.
    Kechagias S; Broman J
    Brain Res; 1995 Mar; 675(1-2):316-20. PubMed ID: 7796145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An ultrastructural study of ipsilateral corticospinal terminations in the rat.
    McClung JR; Castro AJ
    Brain Res; 1975 May; 89(2):327-30. PubMed ID: 1148852
    [No Abstract]   [Full Text] [Related]  

  • 40. Proceedings: A method for demonstrating the topographical relationship between monoamine-containing terminals and intracellularly stained neurones.
    Boakes RJ; Candy JM
    J Physiol; 1976 Jan; 254(1):6P-7P. PubMed ID: 55481
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.