These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21596002)

  • 1. Many-particle Brownian and Langevin Dynamics Simulations with the Brownmove package.
    Geyer T
    BMC Biophys; 2011 Apr; 4():7. PubMed ID: 21596002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained simulation of the translational and rotational diffusion of globular proteins by dissipative particle dynamics.
    Wei J; Liu Y; Song F
    J Chem Phys; 2020 Dec; 153(23):234902. PubMed ID: 33353321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules.
    Elcock AH
    J Chem Theory Comput; 2013 Jul; 9(7):3224-3239. PubMed ID: 23914146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian dynamics simulations on CPU and GPU with BD_BOX.
    Długosz M; Zieliński P; Trylska J
    J Comput Chem; 2011 Sep; 32(12):2734-44. PubMed ID: 21638295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformationally averaged iterative Brownian dynamics simulations of semidilute polymer solutions.
    Young CD; Marvin M; Sing CE
    J Chem Phys; 2018 Nov; 149(17):174904. PubMed ID: 30408996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of solutes with hydrodynamic interactions: comparison between Brownian dynamics and stochastic rotation dynamics simulations.
    Batôt G; Dahirel V; Mériguet G; Louis AA; Jardat M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043304. PubMed ID: 24229301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics.
    Miao L; Young CD; Sing CE
    J Chem Phys; 2017 Jul; 147(2):024904. PubMed ID: 28711045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new coarse-grained model for E. coli cytoplasm: accurate calculation of the diffusion coefficient of proteins and observation of anomalous diffusion.
    Hasnain S; McClendon CL; Hsu MT; Jacobson MP; Bandyopadhyay P
    PLoS One; 2014; 9(9):e106466. PubMed ID: 25180859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic implicit-solvent coarse-grained models of lipid bilayer membranes: fluctuating hydrodynamics thermostat.
    Wang Y; Sigurdsson JK; Brandt E; Atzberger PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023301. PubMed ID: 24032960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Apr; 134(16):164902. PubMed ID: 21528979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales.
    Padding JT; Louis AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031402. PubMed ID: 17025630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Method for Molecular Dynamics on Curved Surfaces.
    Paquay S; Kusters R
    Biophys J; 2016 Mar; 110(6):1226-33. PubMed ID: 27028633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do we have to explicitly model the ions in brownian dynamics simulations of proteins?
    Zimmer MJ; Geyer T
    J Chem Phys; 2012 Mar; 136(12):125102. PubMed ID: 22462897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the importance of hydrodynamic interactions in lipid membrane formation.
    Ando T; Skolnick J
    Biophys J; 2013 Jan; 104(1):96-105. PubMed ID: 23332062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N log N method for hydrodynamic interactions of confined polymer systems: Brownian dynamics.
    Hernández-Ortiz JP; de Pablo JJ; Graham MD
    J Chem Phys; 2006 Oct; 125(16):164906. PubMed ID: 17092138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations.
    Geyer T; Winter U
    J Chem Phys; 2009 Mar; 130(11):114905. PubMed ID: 19317564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface.
    Dani A; Yeganeh M; Maldarelli C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):931-945. PubMed ID: 36037716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques.
    Saadat A; Khomami B
    J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.
    Mereghetti P; Wade RC
    J Phys Chem B; 2012 Jul; 116(29):8523-33. PubMed ID: 22594708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of solution properties and dynamics of RNAs by means of Brownian dynamics simulation of coarse-grained models: Ribosomal 5S RNA and phenylalanine transfer RNA.
    Benítez AA; Hernández Cifre JG; Díaz Baños FG; de la Torre JG
    BMC Biophys; 2015; 8():11. PubMed ID: 26629336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.