These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 21596560)
1. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Zhang T; Zhang L; Su W; Gao P; Li D; He X; Zhang Y Bioresour Technol; 2011 Jul; 102(14):7099-102. PubMed ID: 21596560 [TBL] [Abstract][Full Text] [Related]
2. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells. Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132 [TBL] [Abstract][Full Text] [Related]
3. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Pham TH; Boon N; De Maeyer K; Höfte M; Rabaey K; Verstraete W Appl Microbiol Biotechnol; 2008 Oct; 80(6):985-93. PubMed ID: 18688612 [TBL] [Abstract][Full Text] [Related]
4. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838 [TBL] [Abstract][Full Text] [Related]
5. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7]. Luo HP; Liu GL; Zhang RD; Cao LX Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241 [TBL] [Abstract][Full Text] [Related]
7. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Pham TH; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Vanhaecke L; De Maeyer K; Höfte M; Verstraete W; Rabaey K Appl Microbiol Biotechnol; 2008 Jan; 77(5):1119-29. PubMed ID: 17968538 [TBL] [Abstract][Full Text] [Related]
8. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells. Ren Z; Ramasamy RP; Cloud-Owen SR; Yan H; Mench MM; Regan JM Bioresour Technol; 2011 Jan; 102(1):416-21. PubMed ID: 20591659 [TBL] [Abstract][Full Text] [Related]
9. Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells. Jayapriya J; Ramamurthy V Bioresour Technol; 2012 Nov; 124():23-8. PubMed ID: 22985848 [TBL] [Abstract][Full Text] [Related]
10. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa. Bosire EM; Blank LM; Rosenbaum MA Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325 [TBL] [Abstract][Full Text] [Related]
12. Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. Yong YC; Cai Z; Yu YY; Chen P; Jiang R; Cao B; Sun JZ; Wang JY; Song H Bioresour Technol; 2013 Feb; 130():763-8. PubMed ID: 23353587 [TBL] [Abstract][Full Text] [Related]
13. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Yong YC; Yu YY; Li CM; Zhong JJ; Song H Biosens Bioelectron; 2011 Dec; 30(1):87-92. PubMed ID: 21945141 [TBL] [Abstract][Full Text] [Related]
14. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Su W; Zhang L; Li D; Zhan G; Qian J; Tao Y Biotechnol Bioeng; 2012 Nov; 109(11):2904-10. PubMed ID: 22573563 [TBL] [Abstract][Full Text] [Related]
15. [Survival elongation of Pseudomonas aeruginosa improves power output of microbial fuel cells]. You T; Liu J; Liang R; Liu J Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):601-608. PubMed ID: 28920393 [TBL] [Abstract][Full Text] [Related]
16. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Chung K; Okabe S Biotechnol Bioeng; 2009 Dec; 104(5):901-10. PubMed ID: 19575435 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells. Yuan Y; Zhou S; Xu N; Zhuang L Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727 [TBL] [Abstract][Full Text] [Related]
18. The utility of Shewanella japonica for microbial fuel cells. Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660 [TBL] [Abstract][Full Text] [Related]
19. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Sun M; Zhang F; Tong ZH; Sheng GP; Chen YZ; Zhao Y; Chen YP; Zhou SY; Liu G; Tian YC; Yu HQ Biosens Bioelectron; 2010 Oct; 26(2):338-43. PubMed ID: 20801013 [TBL] [Abstract][Full Text] [Related]
20. Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell. Lee SW; Jeon BY; Park DH Biotechnol Lett; 2010 Apr; 32(4):483-7. PubMed ID: 20013300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]