These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2159719)

  • 41. Role of endothelium-derived bradykinin in the control of vascular tone.
    Hecker M; Dambacher T; Busse R
    J Cardiovasc Pharmacol; 1992; 20 Suppl 9():S55-61. PubMed ID: 1282631
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and action of nitric oxide in rat glomerular mesangial cells.
    Shultz PJ; Tayeh MA; Marletta MA; Raij L
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F600-6. PubMed ID: 1718166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endothelium-derived bradykinin: implications for angiotensin-converting enzyme-inhibitor therapy.
    Busse R; Fleming I; Hecker M
    J Cardiovasc Pharmacol; 1993; 22 Suppl 5():S31-6. PubMed ID: 7508049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor.
    Martin W; Furchgott RF; Villani GM; Jothianandan D
    J Pharmacol Exp Ther; 1986 May; 237(2):529-38. PubMed ID: 3009791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. From nitric oxide to endothelial cytosolic Ca2+: a negative feedback control.
    Yao X; Huang Y
    Trends Pharmacol Sci; 2003 Jun; 24(6):263-6. PubMed ID: 12823948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of calcium mobilization and entry in human platelets by endothelium-derived factors.
    Geiger J; Nolte C; Walter U
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C236-44. PubMed ID: 8048483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A simple and sensitive bioassay method for detection of EDRF with RFL-6 rat lung fibroblasts.
    Ishii K; Sheng H; Warner TD; Förstermann U; Murad F
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H598-603. PubMed ID: 1652215
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Release of nitric oxide from endothelial cells stimulated by YC-1, an activator of soluble guanylyl cyclase.
    Wohlfart P; Malinski T; Ruetten H; Schindler U; Linz W; Schoenafinger K; Strobel H; Wiemer G
    Br J Pharmacol; 1999 Nov; 128(6):1316-22. PubMed ID: 10578147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contribution of agonist-induced hyperpolarization to Ca2+ influx and formation of EDRF in vascular endothelial cells.
    Kukovetz WR; Graier WF; Groschner K
    Jpn J Pharmacol; 1992; 58 Suppl 2():213P-219P. PubMed ID: 1324337
    [No Abstract]   [Full Text] [Related]  

  • 50. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery.
    Rodman DM; Yamaguchi T; Hasunuma K; O'Brien RF; McMurtry IF
    Am J Physiol; 1990 Apr; 258(4 Pt 1):L207-14. PubMed ID: 2159226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Role of glomerular mesangial cells in the regulation of glomerular endothelial cell growth].
    Nitta K; Uchida K; Murai K; Horita S; Tsutsui T; Ozu H; Kawashima A; Yumura W; Nihei H
    Nihon Jinzo Gakkai Shi; 1993 Jun; 35(6):663-9. PubMed ID: 8377278
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Endothelium-derived relaxing and contracting factors.
    Furchgott RF; Vanhoutte PM
    FASEB J; 1989 Jul; 3(9):2007-18. PubMed ID: 2545495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium and activation of the release of endothelium-derived relaxing factor.
    Rubanyi GM; Vanhoutte PM
    Ann N Y Acad Sci; 1988; 522():226-33. PubMed ID: 3288050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Release of superoxide-dependent relaxing factor(s) from endothelial cells.
    Hong KW; Rhim BY; Lee WS; Jeong BR; Kim CD; Shin YW
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1340-6. PubMed ID: 2556045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Zonal changes of guanidine 3', 5'-cyclic monophosphate related to endothelium-derived relaxing factor in dog renal medulla.
    Biondi ML; Bolterman RJ; Romero JC
    Ren Physiol Biochem; 1992; 15(1):16-22. PubMed ID: 1372744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The glomerular mesangial cell: an expanding role for a specialized pericyte.
    Schlondorff D
    FASEB J; 1987 Oct; 1(4):272-81. PubMed ID: 3308611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decrease in ambient [Cl-] stimulates nitric oxide release from cultured rat mesangial cells.
    Tsukahara H; Krivenko Y; Moore LC; Goligorsky MS
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F190-5. PubMed ID: 8048560
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitric oxide: an inflammatory mediator of glomerular mesangial cells.
    Pfeilschifter J; Kunz D; Mühl H
    Nephron; 1993; 64(4):518-25. PubMed ID: 8366977
    [No Abstract]   [Full Text] [Related]  

  • 59. Reactive oxygen species as glomerular autacoids.
    Baud L; Fouqueray B; Philippe C; Ardaillou R
    J Am Soc Nephrol; 1992 Apr; 2(10 Suppl):S132-8. PubMed ID: 1600128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Next-gen cancer research.
    Semenza GL
    J Mol Med (Berl); 2017 Aug; 95(8):789. PubMed ID: 28707082
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.