These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 21597191)

  • 1. Heterologous expression of the Oceanobacillus iheyensis SigW and its anti-protein RsiW in Bacillus subtilis.
    Yano K; Inoue H; Mori H; Yee LM; Matsuoka S; Sadaie Y; Asai K
    Biosci Biotechnol Biochem; 2011; 75(5):966-75. PubMed ID: 21597191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the regulation of Bacillus subtilis SigW activity by anti-sigma RsiW.
    Devkota SR; Kwon E; Ha SC; Chang HW; Kim DY
    PLoS One; 2017; 12(3):e0174284. PubMed ID: 28319136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis.
    Heinrich J; Wiegert T
    Mol Microbiol; 2006 Oct; 62(2):566-79. PubMed ID: 17020587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response.
    Zellmeier S; Schumann W; Wiegert T
    Mol Microbiol; 2006 Sep; 61(6):1569-82. PubMed ID: 16899079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC.
    Schöbel S; Zellmeier S; Schumann W; Wiegert T
    Mol Microbiol; 2004 May; 52(4):1091-105. PubMed ID: 15130127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of the recognition of the -35 promoter element by SigW from Bacillus subtilis.
    Kwon E; Devkota SR; Pathak D; Dahal P; Kim DY
    PLoS One; 2019; 14(8):e0221666. PubMed ID: 31461489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW.
    Heinrich J; Hein K; Wiegert T
    Mol Microbiol; 2009 Dec; 74(6):1412-26. PubMed ID: 19889088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and
    Parrell D; Zhang Y; Olenic S; Kroos L
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28674070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids.
    Juang YL; Helmann JD
    J Mol Biol; 1994 Feb; 235(5):1470-88. PubMed ID: 8107087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential and cross-transcriptional control of duplicated genes encoding alternative sigma factors in Streptomyces ambofaciens.
    Roth V; Aigle B; Bunet R; Wenner T; Fourrier C; Decaris B; Leblond P
    J Bacteriol; 2004 Aug; 186(16):5355-65. PubMed ID: 15292136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phylogenomic study of the general stress response sigma factor sigmaB of Bacillus subtilis and its regulatory proteins.
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):427-52. PubMed ID: 12125823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus subtilis 168 gene lytF encodes a gamma-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, sigmaD.
    Margot P; Pagni M; Karamata D
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():57-65. PubMed ID: 10206711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W.
    Huang X; Gaballa A; Cao M; Helmann JD
    Mol Microbiol; 1999 Jan; 31(1):361-71. PubMed ID: 9987136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP.
    Heinrich J; Lundén T; Kontinen VP; Wiegert T
    Microbiology (Reading); 2008 Jul; 154(Pt 7):1989-1997. PubMed ID: 18599827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the sigma factor in transcription initiation in the absence of core RNA polymerase.
    Hsu HH; Chung KM; Chen TC; Chang BY
    Cell; 2006 Oct; 127(2):317-27. PubMed ID: 17055433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of kinase activity in Mycobacterium tuberculosis multidomain protein Rv1364c.
    Sachdeva P; Narayan A; Misra R; Brahmachari V; Singh Y
    FEBS J; 2008 Dec; 275(24):6295-308. PubMed ID: 19016841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpoIIAA governs the release of the cell-type specific transcription factor sigma F from its anti-sigma factor SpoIIAB.
    Duncan L; Alper S; Losick R
    J Mol Biol; 1996 Jul; 260(2):147-64. PubMed ID: 8764397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of amino acid substitutions in the promoter -10 binding region of the sigma A factor on growth of Bacillus subtilis.
    Chang BY; Doi RH
    J Bacteriol; 1993 Apr; 175(8):2470-4. PubMed ID: 8468306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of two genes encoding putative new members of the ECF subfamily of eubacterial RNA polymerase sigma factors in Clostridium acetobutylicum.
    Behrens S; Meyer U; Schankin H; Lonetto MA; Fischer RJ; Bahl H
    J Mol Microbiol Biotechnol; 2000 Jul; 2(3):265-9. PubMed ID: 10937434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis.
    Reder A; Höper D; Weinberg C; Gerth U; Fraunholz M; Hecker M
    Mol Microbiol; 2008 Sep; 69(5):1104-20. PubMed ID: 18643936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.