BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21597326)

  • 1. Starch-related carbon fluxes in roots and leaves of Arabidopsis thaliana.
    Malinova I; Steup M; Fettke J
    Plant Signal Behav; 2011 Jul; 6(7):1060-2. PubMed ID: 21597326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana.
    Malinova I; Steup M; Fettke J
    J Plant Physiol; 2011 Aug; 168(12):1406-14. PubMed ID: 21269731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sink-specific plastidic phosphate transporter PHT4;2 influences starch accumulation and leaf size in Arabidopsis.
    Irigoyen S; Karlsson PM; Kuruvilla J; Spetea C; Versaw WK
    Plant Physiol; 2011 Dec; 157(4):1765-77. PubMed ID: 21960139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel heteroglycan-interacting protein, HIP 1.3, from Arabidopsis thaliana.
    Fettke J; Nunes-Nesi A; Fernie AR; Steup M
    J Plant Physiol; 2011 Aug; 168(12):1415-25. PubMed ID: 21087810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in leaf starch metabolism modulate the diurnal root growth profiles of Arabidopsis thaliana.
    Yazdanbakhsh N; Fisahn J
    Plant Signal Behav; 2011 Jul; 6(7):995-8. PubMed ID: 21691153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants.
    Santos-Filho PR; Saviani EE; Salgado I; Oliveira HC
    Amino Acids; 2014 Apr; 46(4):1121-9. PubMed ID: 24468931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch biosynthesis in guard cells has features of both autotrophic and heterotrophic tissues.
    Flütsch S; Horrer D; Santelia D
    Plant Physiol; 2022 Jun; 189(2):541-556. PubMed ID: 35238373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transglucosidase necessary for starch degradation and maltose metabolism in leaves at night acts on cytosolic heteroglycans (SHG).
    Fettke J; Chia T; Eckermann N; Smith A; Steup M
    Plant J; 2006 May; 46(4):668-84. PubMed ID: 16640603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pivotal role for starch in the reconfiguration of
    Dong S; Zhang J; Beckles DM
    Sci Rep; 2018 Jun; 8(1):9314. PubMed ID: 29915332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2: an experimentally based model.
    Rasse DP; Tocquin P
    New Phytol; 2006; 172(3):500-13. PubMed ID: 17083680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starch Granules in
    Liu Q; Li X; Fettke J
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Young seedlings adapt to stress by retaining starch and retarding growth through ABA-Dependent and -independent pathways in Arabidopsis.
    Liu K; Zou W; Gao X; Wang X; Yu Q; Ge L
    Biochem Biophys Res Commun; 2019 Aug; 515(4):699-705. PubMed ID: 31186142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants.
    Thalmann M; Pazmino D; Seung D; Horrer D; Nigro A; Meier T; Kölling K; Pfeifhofer HW; Zeeman SC; Santelia D
    Plant Cell; 2016 Aug; 28(8):1860-78. PubMed ID: 27436713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A putative phosphatase, LSF1, is required for normal starch turnover in Arabidopsis leaves.
    Comparot-Moss S; Kötting O; Stettler M; Edner C; Graf A; Weise SE; Streb S; Lue WL; MacLean D; Mahlow S; Ritte G; Steup M; Chen J; Zeeman SC; Smith AM
    Plant Physiol; 2010 Feb; 152(2):685-97. PubMed ID: 20018601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves.
    Baslam M; Baroja-Fernández E; Ricarte-Bermejo A; Sánchez-López ÁM; Aranjuelo I; Bahaji A; Muñoz FJ; Almagro G; Pujol P; Galarza R; Teixidor P; Pozueta-Romero J
    PLoS One; 2017; 12(2):e0171245. PubMed ID: 28152100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana.
    Kalcsits LA; Guy RD
    Physiol Plant; 2013 Oct; 149(2):249-59. PubMed ID: 23414092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon transitions from either Calvin cycle or transitory starch to heteroglycans as revealed by (14) C-labeling experiments using protoplasts from Arabidopsis.
    Malinova I; Steup M; Fettke J
    Physiol Plant; 2013 Sep; 149(1):25-44. PubMed ID: 23413959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model.
    Ingkasuwan P; Netrphan S; Prasitwattanaseree S; Tanticharoen M; Bhumiratana S; Meechai A; Chaijaruwanich J; Takahashi H; Cheevadhanarak S
    BMC Syst Biol; 2012 Aug; 6():100. PubMed ID: 22898356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal changes in allocation and partitioning of new carbon as (11)C elicited by simulated herbivory suggest that roots shape aboveground responses in Arabidopsis.
    Ferrieri AP; Agtuca B; Appel HM; Ferrieri RA; Schultz JC
    Plant Physiol; 2013 Feb; 161(2):692-704. PubMed ID: 23370716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis.
    Wingler A; Fritzius T; Wiemken A; Boller T; Aeschbacher RA
    Plant Physiol; 2000 Sep; 124(1):105-14. PubMed ID: 10982426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.