These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21597926)

  • 21. Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars.
    Boucenna S; Cohen D; Meltzoff AN; Gaussier P; Chetouani M
    Sci Rep; 2016 Feb; 6():19908. PubMed ID: 26844862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A conceptual cognitive architecture for robots to learn behaviors from demonstrations in robotic aid area.
    Tan H; Liang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1249-52. PubMed ID: 22254543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory learning: a developmental method.
    Zhang Y; Weng J; Hwang WS
    IEEE Trans Neural Netw; 2005 May; 16(3):601-16. PubMed ID: 15940990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review of contemporary ideomotor theory.
    Shin YK; Proctor RW; Capaldi EJ
    Psychol Bull; 2010 Nov; 136(6):943-74. PubMed ID: 20822210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The grounding of higher order concepts in action and language: a cognitive robotics model.
    Stramandinoli F; Marocco D; Cangelosi A
    Neural Netw; 2012 Aug; 32():165-73. PubMed ID: 22386502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emergence and development of embodied cognition: a constructivist approach using robots.
    Kuniyoshi Y; Yorozu Y; Suzuki S; Sangawa S; Ohmura Y; Terada K; Nagakubo A
    Prog Brain Res; 2007; 164():425-45. PubMed ID: 17920445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensory change following motor learning.
    Mattar AA; Nasir SM; Darainy M; Ostry DJ
    Prog Brain Res; 2011; 191():31-44. PubMed ID: 21741542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model learning for robot control: a survey.
    Nguyen-Tuong D; Peters J
    Cogn Process; 2011 Nov; 12(4):319-40. PubMed ID: 21487784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental perception of the self and action.
    Saegusa R; Metta G; Sandini G; Natale L
    IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):183-202. PubMed ID: 24806653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creating the brain and interacting with the brain: an integrated approach to understanding the brain.
    Morimoto J; Kawato M
    J R Soc Interface; 2015 Mar; 12(104):20141250. PubMed ID: 25589568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular Nonlinear Networks for the emergence of perceptual states: application to robot navigation control.
    Arena P; De Fiore S; Patané L
    Neural Netw; 2009; 22(5-6):801-11. PubMed ID: 19596552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing.
    Simmatis LER; Early S; Moore KD; Appaqaq S; Scott SH
    J Neuroeng Rehabil; 2020 Jul; 17(1):86. PubMed ID: 32615979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards a common framework of grounded action cognition: Relating motor control, perception and cognition.
    Gentsch A; Weber A; Synofzik M; Vosgerau G; Schütz-Bosbach S
    Cognition; 2016 Jan; 146():81-9. PubMed ID: 26407337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self discovery enables robot social cognition: are you my teacher?
    Kaipa KN; Bongard JC; Meltzoff AN
    Neural Netw; 2010; 23(8-9):1113-24. PubMed ID: 20732790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Off-line simulation inspires insight: A neurodynamics approach to efficient robot task learning.
    Sousa E; Erlhagen W; Ferreira F; Bicho E
    Neural Netw; 2015 Dec; 72():123-39. PubMed ID: 26548945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An action generation model by using time series prediction and its application to robot navigation.
    Gouko M; Ito K
    Int J Neural Syst; 2009 Apr; 19(2):105-13. PubMed ID: 19496206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-scopic neuro-cognitive adaptation for legged locomotion robots.
    Saputra AA; Wada K; Masuda S; Kubota N
    Sci Rep; 2022 Sep; 12(1):16222. PubMed ID: 36171213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A framework to describe, analyze and generate interactive motor behaviors.
    Jarrassé N; Charalambous T; Burdet E
    PLoS One; 2012; 7(11):e49945. PubMed ID: 23226231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.