BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21597967)

  • 21. Sensory cortex underpinnings of traumatic brain injury deficits.
    Alwis DS; Yan EB; Morganti-Kossmann MC; Rajan R
    PLoS One; 2012; 7(12):e52169. PubMed ID: 23284921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional cerebral blood flow responses to variable frequency whisker stimulation: an autoradiographic analysis.
    Gerrits RJ; Raczynski C; Greene AS; Stein EA
    Brain Res; 2000 May; 864(2):205-12. PubMed ID: 10802027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury.
    Ziebell JM; Taylor SE; Cao T; Harrison JL; Lifshitz J
    J Neuroinflammation; 2012 Oct; 9():247. PubMed ID: 23111107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reorganization of Thalamic Inputs to Lesioned Cortex Following Experimental Traumatic Brain Injury.
    Ndode-Ekane XE; Puigferrat Pérez MDM; Di Sapia R; Lapinlampi N; Pitkänen A
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34199241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex.
    Brecht M; Sakmann B
    J Physiol; 2002 Aug; 543(Pt 1):49-70. PubMed ID: 12181281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rehabilitation modality and onset differentially influence whisker sensory hypersensitivity after diffuse traumatic brain injury in the rat.
    Thomas TC; Stockhausen EM; Law LM; Khodadad A; Lifshitz J
    Restor Neurol Neurosci; 2017; 35(6):611-629. PubMed ID: 29036852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic metabolic sequelae of traumatic brain injury: prolonged suppression of somatosensory activation.
    Passineau MJ; Zhao W; Busto R; Dietrich WD; Alonso O; Loor JY; Bramlett HM; Ginsberg MD
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H924-31. PubMed ID: 10993751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral Consequences of a Bifacial Map in the Mouse Somatosensory Cortex.
    Tsytsarev V; Arakawa H; Zhao S; Chédotal A; Erzurumlu RS
    J Neurosci; 2017 Jul; 37(30):7209-7218. PubMed ID: 28663199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypersensitive glutamate signaling correlates with the development of late-onset behavioral morbidity in diffuse brain-injured circuitry.
    Thomas TC; Hinzman JM; Gerhardt GA; Lifshitz J
    J Neurotrauma; 2012 Jan; 29(2):187-200. PubMed ID: 21939393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI.
    Chakrabarti S; Alloway KD
    J Comp Neurol; 2006 Oct; 498(5):624-36. PubMed ID: 16917827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus.
    Thomas TC; Ogle SB; Rumney BM; May HG; Adelson PD; Lifshitz J
    Behav Brain Res; 2018 Mar; 340():137-146. PubMed ID: 28042008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex.
    Bruno RM; Khatri V; Land PW; Simons DJ
    J Neurosci; 2003 Oct; 23(29):9565-74. PubMed ID: 14573536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of thalamocortical oscillations following traumatic brain injury in rats.
    Kao C; Forbes JA; Jermakowicz WJ; Sun DA; Davis B; Zhu J; Lagrange AH; Konrad PE
    J Neurosurg; 2012 Aug; 117(2):316-23. PubMed ID: 22631688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurotoxic regimens of methamphetamine induce persistent expression of phospho-c-Jun in somatosensory cortex and substantia nigra.
    O'Dell SJ; Marshall JF
    Synapse; 2005 Mar; 55(3):137-47. PubMed ID: 15549691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrissal motor cortex in the rat: connections with the barrel field.
    Izraeli R; Porter LL
    Exp Brain Res; 1995; 104(1):41-54. PubMed ID: 7621940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Traumatic Brain Injury-Induced Sex-Dependent Changes in Late-Onset Sensory Hypersensitivity and Glutamate Neurotransmission.
    Krishna G; Bromberg C; Connell EC; Mian E; Hu C; Lifshitz J; Adelson PD; Thomas TC
    Front Neurol; 2020; 11():749. PubMed ID: 32849211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unilateral whisker trimming in newborn rats alters neuronal coincident discharge among mature barrel cortex neurons.
    Ghoshal A; Lustig B; Popescu M; Ebner F; Pouget P
    J Neurophysiol; 2014 Oct; 112(8):1925-35. PubMed ID: 25057142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Barreloids in adult rat thalamus: three-dimensional architecture and relationship to somatosensory cortical barrels.
    Land PW; Buffer SA; Yaskosky JD
    J Comp Neurol; 1995 May; 355(4):573-88. PubMed ID: 7636032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin-like growth factor-1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia-ischemia in rats.
    Guan J; Miller OT; Waugh KM; McCarthy DC; Gluckman PD
    Neuroscience; 2001; 105(2):299-306. PubMed ID: 11672597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits.
    Alloway KD
    Cereb Cortex; 2008 May; 18(5):979-89. PubMed ID: 17702950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.