BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21598128)

  • 1. Geometrical optimisation of a biochip microchannel fluidic separator.
    Xue X; Patel MK; Bailey C; Desmulliez MP
    Comput Methods Biomech Biomed Engin; 2012; 15(9):981-91. PubMed ID: 21598128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator.
    Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of geometric separation mechanisms by implementing curved constrictions in a biochip microchannel fluidic separator.
    Xue X; Bailey C
    Comput Methods Biomech Biomed Engin; 2013; 16(3):314-27. PubMed ID: 22229479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood plasma separation in elevated dimension T-shaped microchannel.
    Tripathi S; Prabhakar A; Kumar N; Singh SG; Agrawal A
    Biomed Microdevices; 2013 Jun; 15(3):415-25. PubMed ID: 23355067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device for continuous white blood cell separation and lysis from whole blood.
    Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S
    Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of sample transfer in two-dimensional microfluidic separation systems.
    Yang S; Liu J; DeVoe DL
    Lab Chip; 2008 Jul; 8(7):1145-52. PubMed ID: 18584091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural design of microfluidic channels for blood plasma separation.
    Zhang J; Wei X; Xue X; Jiang Z
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7419-26. PubMed ID: 25942803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach to the uniform distribution of liquid in multi-channel (electrochemical) flow-through cells.
    Lacina K; Vondál J; Skládal P
    Anal Chim Acta; 2012 May; 727():41-6. PubMed ID: 22541821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of motile bacteria using drift velocity in a microchannel.
    Ishikawa T; Shioiri T; Numayama-Tsuruta K; Ueno H; Imai Y; Yamaguchi T
    Lab Chip; 2014 Mar; 14(5):1023-32. PubMed ID: 24448484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Study of Bubble Breakup in Fractal Tree-Shaped Microchannels.
    Zhang C; Zhang X; Li Q; Wu L
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31694334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.
    Chen CL; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.
    Cho CC; Chen CL; Chen CK
    Electrophoresis; 2012 Mar; 33(5):743-50. PubMed ID: 22522530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments.
    Kang YJ; Yang S
    Lab Chip; 2012 Apr; 12(10):1881-9. PubMed ID: 22437280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems.
    Saias L; Autebert J; Malaquin L; Viovy JL
    Lab Chip; 2011 Mar; 11(5):822-32. PubMed ID: 21240403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.