BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2159823)

  • 1. Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry.
    Brauth SE
    Brain Res; 1990 Jan; 508(1):142-6. PubMed ID: 2159823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory pathways in the budgerigar. I. Thalamo-telencephalic projections.
    Brauth SE; McHale CM; Brasher CA; Dooling RJ
    Brain Behav Evol; 1987; 30(3-4):174-99. PubMed ID: 3664262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory pathways in the budgerigar. II. Intratelencephalic pathways.
    Brauth SE; McHale CM
    Brain Behav Evol; 1988; 32(4):193-207. PubMed ID: 3233481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory projections to the anterior telencephalon in the budgerigar (Melopsittacus undulatus).
    Hall WS; Cohen PL; Brauth SE
    Brain Behav Evol; 1993; 41(2):97-116. PubMed ID: 8439806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of the auditory midbrain, thalamus and forebrain in the chicken (Gallus domesticus) with cytochrome oxidase histochemistry.
    Dezsö A; Schwarz DW; Schwarz IE
    J Otolaryngol; 1993 Oct; 22(5):391-6. PubMed ID: 8283511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact call-driven Zenk protein induction and habituation in telencephalic auditory pathways in the Budgerigar (Melopsittacus undulatus): implications for understanding vocal learning processes.
    Brauth S; Liang W; Roberts TF; Scott LL; Quinlan EM
    Learn Mem; 2002; 9(2):76-88. PubMed ID: 11992018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-and-belt organisation of the mesencephalic and forebrain auditory centres in turtles: expression of calcium-binding proteins and metabolic activity.
    Belekhova MG; Chudinova TV; Repérant J; Ward R; Jay B; Vesselkin NP; Kenigfest NB
    Brain Res; 2010 Jul; 1345():84-102. PubMed ID: 20478279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal connections between primary and secondary auditory pathways in the telencephalon of the budgerigar (Melopsittacus undulatus).
    Farabaugh SM; Wild JM
    Brain Res; 1997 Jan; 747(1):18-25. PubMed ID: 9042523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcitonin gene-related peptide immunoreactive cells and fibers in forebrain vocal and auditory nuclei of the budgerigar (Melopsittacus undulatus).
    Durand SE; Brauth SE; Liang W
    Brain Behav Evol; 2001; 58(2):61-79. PubMed ID: 11805374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connections of the auditory forebrain in the pigeon (Columba livia).
    Wild JM; Karten HJ; Frost BJ
    J Comp Neurol; 1993 Nov; 337(1):32-62. PubMed ID: 8276991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of tyrosine hydroxylase-containing neurons and fibers in the brain of the budgerigar (Melopsittacus undulatus): general patterns and labeling in vocal control nuclei.
    Roberts TF; Cookson KK; Heaton KJ; Hall WS; Brauth SE
    J Comp Neurol; 2001 Jan; 429(3):436-54. PubMed ID: 11116230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact-call driven and tone-driven zenk expression in the nucleus ovoidalis of the budgerigar (Melopsittacus undulatus).
    Brauth SE; Liang W; Hall WS
    Neuroreport; 2006 Sep; 17(13):1407-10. PubMed ID: 16932148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections of the oval nucleus of the hyperstriatum ventrale in the budgerigar: relationships with the auditory system.
    Brauth SE; Liang W; Roberts TF
    J Comp Neurol; 2001 Apr; 432(4):481-511. PubMed ID: 11268010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Metabolic activity of thalamic and telencephalic auditory centers in the pigeon].
    Belekhova MG; Chudinova TV; Kenigfest NB
    Zh Evol Biokhim Fiziol; 2009; 45(5):511-7. PubMed ID: 19886199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches.
    Vates GE; Broome BM; Mello CV; Nottebohm F
    J Comp Neurol; 1996 Mar; 366(4):613-42. PubMed ID: 8833113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry.
    Gonzalez-Lima F; Jones D
    Brain Res; 1994 Oct; 660(1):34-49. PubMed ID: 7828000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the dorsocaudal neostriatal complex: a retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting.
    Metzger M; Jiang S; Braun K
    J Comp Neurol; 1998 Jun; 395(3):380-404. PubMed ID: 9596530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinic dehydrogenase histochemistry reveals the location of the putative primary visual and auditory areas within the dorsal ventricular ridge of Sphenodon punctatus.
    Reiner A; Northcutt RG
    Brain Behav Evol; 2000 Jan; 55(1):26-36. PubMed ID: 10773623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects of lesions in nucleus basalis and field 'L' on vocal learning and performance in the budgerigar (Melopsittacus undulatus).
    Hall WS; Brauth SE; Heaton JT
    Brain Behav Evol; 1994; 44(3):133-48. PubMed ID: 7987662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcitonin-gene related peptide is an evolutionarily conserved marker within the amniote thalamo-telencephalic auditory pathway.
    Brauth SE; Reiner A
    J Comp Neurol; 1991 Nov; 313(2):227-39. PubMed ID: 1765582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.