These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 21598383)
1. Facile preparation of monolithic immobilized metal affinity chromatography capillary columns for selective enrichment of phosphopeptides. Zhang L; Wang H; Liang Z; Yang K; Zhang L; Zhang Y J Sep Sci; 2011 Aug; 34(16-17):2122-30. PubMed ID: 21598383 [TBL] [Abstract][Full Text] [Related]
2. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Yu Z; Han G; Sun S; Jiang X; Chen R; Wang F; Wu R; Ye M; Zou H Anal Chim Acta; 2009 Mar; 636(1):34-41. PubMed ID: 19231353 [TBL] [Abstract][Full Text] [Related]
3. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941 [TBL] [Abstract][Full Text] [Related]
4. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815 [TBL] [Abstract][Full Text] [Related]
5. Monoliths with immobilized zirconium ions for selective enrichment of phosphopeptides. Wang H; Duan J; Yu H; Zhao L; Liang Y; Shan Y; Zhang L; Liang Z; Zhang Y J Sep Sci; 2011 Aug; 34(16-17):2113-21. PubMed ID: 21648081 [TBL] [Abstract][Full Text] [Related]
6. Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome. Hou C; Ma J; Tao D; Shan Y; Liang Z; Zhang L; Zhang Y J Proteome Res; 2010 Aug; 9(8):4093-101. PubMed ID: 20568813 [TBL] [Abstract][Full Text] [Related]
7. Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity. Hong Y; Zhao H; Pu C; Zhan Q; Sheng Q; Lan M Anal Chem; 2018 Sep; 90(18):11008-11015. PubMed ID: 30136585 [TBL] [Abstract][Full Text] [Related]
8. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456 [TBL] [Abstract][Full Text] [Related]
9. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032 [TBL] [Abstract][Full Text] [Related]
10. Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides. He XM; Chen X; Zhu GT; Wang Q; Yuan BF; Feng YQ ACS Appl Mater Interfaces; 2015 Aug; 7(31):17356-62. PubMed ID: 26207954 [TBL] [Abstract][Full Text] [Related]
11. Development of an enrichment method for endogenous phosphopeptide characterization in human serum. La Barbera G; Capriotti AL; Cavaliere C; Ferraris F; Laus M; Piovesana S; Sparnacci K; Laganà A Anal Bioanal Chem; 2018 Jan; 410(3):1177-1185. PubMed ID: 29318361 [TBL] [Abstract][Full Text] [Related]
12. Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment. Arribas Diez I; Govender I; Naicker P; Stoychev S; Jordaan J; Jensen ON J Proteome Res; 2021 Jan; 20(1):453-462. PubMed ID: 33226818 [TBL] [Abstract][Full Text] [Related]
13. Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography. Negroni L; Claverol S; Rosenbaum J; Chevet E; Bonneu M; Schmitter JM J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Apr; 891-892():109-12. PubMed ID: 22406350 [TBL] [Abstract][Full Text] [Related]
14. Development of immobilized Sn Lin H; Deng C Proteomics; 2016 Nov; 16(21):2733-2741. PubMed ID: 27650410 [TBL] [Abstract][Full Text] [Related]
15. Ti(4+)-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. Shen F; Hu Y; Guan P; Ren X J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Aug; 902():108-15. PubMed ID: 22795554 [TBL] [Abstract][Full Text] [Related]
16. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Lin H; Chen H; Shao X; Deng C Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348 [TBL] [Abstract][Full Text] [Related]
17. Highly selective enrichment of phosphopeptides using Zr Dai J; Wang M; Liu H Talanta; 2017 Mar; 164():222-227. PubMed ID: 28107921 [TBL] [Abstract][Full Text] [Related]
18. Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. Choi H; Lee S; Jun CD; Park ZY J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2991-7. PubMed ID: 21930439 [TBL] [Abstract][Full Text] [Related]
19. The use of liquid phase deposition prepared phosphonate grafted silica nanoparticle-deposited capillaries in the enrichment of phosphopeptides. Wu JH; Zhao Y; Li T; Xu C; Xiao K; Feng YQ; Guo L J Sep Sci; 2010 Jun; 33(12):1806-15. PubMed ID: 20468006 [TBL] [Abstract][Full Text] [Related]