These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21598767)
1. Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils. Danh LT; Truong P; Mammucari R; Fostert N Int J Phytoremediation; 2011 Jan; 13(1):47-60. PubMed ID: 21598767 [TBL] [Abstract][Full Text] [Related]
2. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study. Wu SC; Wong CC; Shu WS; Khan AG; Wong MH Int J Phytoremediation; 2011 Jan; 13(1):61-74. PubMed ID: 21598768 [TBL] [Abstract][Full Text] [Related]
3. The use of vetiver for remediation of heavy metal soil contamination. Antiochia R; Campanella L; Ghezzi P; Movassaghi K Anal Bioanal Chem; 2007 Jun; 388(4):947-56. PubMed ID: 17468861 [TBL] [Abstract][Full Text] [Related]
4. Effect of calcium on growth performance and essential oil of vetiver grass (Chrysopogon zizanioides) grown on lead contaminated soils. Danh LT; Truong P; Mammucari R; Foster N Int J Phytoremediation; 2011; 13 Suppl 1():154-65. PubMed ID: 22046757 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Vargas C; Pérez-Esteban J; Escolástico C; Masaguer A; Moliner A Environ Sci Pollut Res Int; 2016 Jul; 23(13):13521-30. PubMed ID: 27030238 [TBL] [Abstract][Full Text] [Related]
6. Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminted soil. Ng CC; Boyce AN; Abas MR; Mahmood NZ; Han F Environ Monit Assess; 2019 Jun; 191(7):434. PubMed ID: 31201562 [TBL] [Abstract][Full Text] [Related]
7. The performance of vetivers (Chrysopogon zizaniodes and Chrysopogon nemoralis) on heavy metals phytoremediation: laboratory investigation. Wasino R; Likitlersuang S; Janjaroen D Int J Phytoremediation; 2019; 21(7):624-633. PubMed ID: 30734568 [TBL] [Abstract][Full Text] [Related]
8. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Attinti R; Barrett KR; Datta R; Sarkar D Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794 [TBL] [Abstract][Full Text] [Related]
9. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Siyar R; Doulati Ardejani F; Farahbakhsh M; Norouzi P; Yavarzadeh M; Maghsoudy S Chemosphere; 2020 May; 246():125802. PubMed ID: 31927377 [TBL] [Abstract][Full Text] [Related]
10. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
11. Influence of CaO-activated silicon-based slag amendment on the growth and heavy metal uptake of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils. Mu J; Hu Z; Xie Z; Huang L; Holm PE Environ Sci Pollut Res Int; 2019 Nov; 26(31):32243-32254. PubMed ID: 31502048 [TBL] [Abstract][Full Text] [Related]
12. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Zhang X; Gao B; Xia H Ecotoxicol Environ Saf; 2014 Aug; 106():102-8. PubMed ID: 24836884 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
14. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Anning AK; Akoto R Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. Kafil M; Boroomand Nasab S; Moazed H; Bhatnagar A Int J Phytoremediation; 2019; 21(2):92-100. PubMed ID: 30656949 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
17. Effects of Different Soil Amendments on Mixed Heavy Metals Contamination in Vetiver Grass. Ng CC; Boyce AN; Rahman MM; Abas MR Bull Environ Contam Toxicol; 2016 Nov; 97(5):695-701. PubMed ID: 27655078 [TBL] [Abstract][Full Text] [Related]
18. Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Kiiskila JD; Li K; Sarkar D; Datta R Chemosphere; 2020 Feb; 240():124961. PubMed ID: 31574433 [TBL] [Abstract][Full Text] [Related]
19. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Palanivel TM; Pracejus B; Victor R Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]