These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 21598768)
1. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study. Wu SC; Wong CC; Shu WS; Khan AG; Wong MH Int J Phytoremediation; 2011 Jan; 13(1):61-74. PubMed ID: 21598768 [TBL] [Abstract][Full Text] [Related]
2. Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils. Danh LT; Truong P; Mammucari R; Fostert N Int J Phytoremediation; 2011 Jan; 13(1):47-60. PubMed ID: 21598767 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Vargas C; Pérez-Esteban J; Escolástico C; Masaguer A; Moliner A Environ Sci Pollut Res Int; 2016 Jul; 23(13):13521-30. PubMed ID: 27030238 [TBL] [Abstract][Full Text] [Related]
4. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
5. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Solís-Domínguez FA; Valentín-Vargas A; Chorover J; Maier RM Sci Total Environ; 2011 Feb; 409(6):1009-16. PubMed ID: 21211826 [TBL] [Abstract][Full Text] [Related]
6. The use of vetiver for remediation of heavy metal soil contamination. Antiochia R; Campanella L; Ghezzi P; Movassaghi K Anal Bioanal Chem; 2007 Jun; 388(4):947-56. PubMed ID: 17468861 [TBL] [Abstract][Full Text] [Related]
7. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Siyar R; Doulati Ardejani F; Farahbakhsh M; Norouzi P; Yavarzadeh M; Maghsoudy S Chemosphere; 2020 May; 246():125802. PubMed ID: 31927377 [TBL] [Abstract][Full Text] [Related]
8. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. Gu HH; Zhou Z; Gao YQ; Yuan XT; Ai YJ; Zhang JY; Zuo WZ; Taylor AA; Nan SQ; Li FP Int J Phytoremediation; 2017 Aug; 19(8):739-745. PubMed ID: 28537795 [TBL] [Abstract][Full Text] [Related]
9. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Attinti R; Barrett KR; Datta R; Sarkar D Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794 [TBL] [Abstract][Full Text] [Related]
10. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Bahraminia M; Zarei M; Ronaghi A; Ghasemi-Fasaei R Int J Phytoremediation; 2016; 18(7):730-7. PubMed ID: 26709443 [TBL] [Abstract][Full Text] [Related]
11. Biogeochemical distribution of Pb and Zn forms in two calcareous soils affected by mycorrhizal symbiosis and alfalfa rhizosphere. Moshiri F; Ebrahimi H; Ardakani MR; Rejali F; Mousavi SM Ecotoxicol Environ Saf; 2019 Sep; 179():241-248. PubMed ID: 31051397 [TBL] [Abstract][Full Text] [Related]
12. Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminted soil. Ng CC; Boyce AN; Abas MR; Mahmood NZ; Han F Environ Monit Assess; 2019 Jun; 191(7):434. PubMed ID: 31201562 [TBL] [Abstract][Full Text] [Related]
13. Effect of calcium on growth performance and essential oil of vetiver grass (Chrysopogon zizanioides) grown on lead contaminated soils. Danh LT; Truong P; Mammucari R; Foster N Int J Phytoremediation; 2011; 13 Suppl 1():154-65. PubMed ID: 22046757 [TBL] [Abstract][Full Text] [Related]
14. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Punamiya P; Datta R; Sarkar D; Barber S; Patel M; Das P J Hazard Mater; 2010 May; 177(1-3):465-74. PubMed ID: 20061082 [TBL] [Abstract][Full Text] [Related]
15. The performance of vetivers (Chrysopogon zizaniodes and Chrysopogon nemoralis) on heavy metals phytoremediation: laboratory investigation. Wasino R; Likitlersuang S; Janjaroen D Int J Phytoremediation; 2019; 21(7):624-633. PubMed ID: 30734568 [TBL] [Abstract][Full Text] [Related]
16. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
17. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Anning AK; Akoto R Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880 [TBL] [Abstract][Full Text] [Related]
18. A combined chemical and phytoremediation method for reclamation of acid mine drainage-impacted soils. RoyChowdhury A; Sarkar D; Datta R Environ Sci Pollut Res Int; 2019 May; 26(14):14414-14425. PubMed ID: 30868460 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Souza LA; Andrade SA; Souza SC; Schiavinato MA Int J Phytoremediation; 2013; 15(5):465-76. PubMed ID: 23488172 [TBL] [Abstract][Full Text] [Related]
20. Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by Chrysopogon zizanioides (vetiver) in a substrate containing coal mine wastes. Meyer E; Londoño DM; de Armas RD; Giachini AJ; Rossi MJ; Stoffel SC; Soares CR Int J Phytoremediation; 2017 Feb; 19(2):113-120. PubMed ID: 27491701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]