BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21598783)

  • 1. The potential of established turf cover for cleaning oily desert soil using rhizosphere technology.
    Mahmoud HM; Suleman P; Sorkhoh NA; Salamah S; Radwan SS
    Int J Phytoremediation; 2011 Feb; 13(2):156-67. PubMed ID: 21598783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill.
    Al-Awadhi H; Al-Mailem D; Dashti N; Khanafer M; Radwan S
    Arch Microbiol; 2012 Aug; 194(8):689-705. PubMed ID: 22398928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divulging diazotrophic bacterial community structure in Kuwait desert ecosystems and their N2-fixation potential.
    Suleiman MK; Quoreshi AM; Bhat NR; Manuvel AJ; Sivadasan MT
    PLoS One; 2019; 14(12):e0220679. PubMed ID: 31877136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-temperature hydrocarbon biodegradation activities in Kuwaiti desert soil samples.
    Obuekwe CO; Hourani G; Radwan SS
    Folia Microbiol (Praha); 2001; 46(6):535-9. PubMed ID: 11898344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrocarbon-degrading potential of microbial communities from Arctic plants.
    Ferrera-Rodríguez O; Greer CW; Juck D; Consaul LL; Martínez-Romero E; Whyte LG
    J Appl Microbiol; 2013 Jan; 114(1):71-83. PubMed ID: 22984892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.
    Ali N; Dashti N; Salamah S; Al-Awadhi H; Sorkhoh N; Radwan S
    Environ Sci Pollut Res Int; 2016 May; 23(9):8686-98. PubMed ID: 26801925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of oil components and hydrocarbon-utilizing microorganisms during laboratory-scale bioremediation of oil-contaminated soil of Kuwait.
    Cho BH; Chino H; Tsuji H; Kunito T; Makishima H; Uchida H; Matsumoto S; Oyaizu H
    Chemosphere; 1997 Oct; 35(7):1613-21. PubMed ID: 9314192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Petroleum-degrading microbial numbers in rhizosphere and non-rhizosphere crude oil-contaminated soil.
    Kirkpatrick WD; White PM; Wolf DC; Thoma GJ; Reynolds CM
    Int J Phytoremediation; 2008; 10(3):208-19. PubMed ID: 18710096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil.
    Sorkhoh NA; al-Hasan RH; Khanafer M; Radwan SS
    J Appl Bacteriol; 1995 Feb; 78(2):194-9. PubMed ID: 7698954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil.
    Fatima K; Afzal M; Imran A; Khan QM
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):314-20. PubMed ID: 25661008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Most hydrocarbonoclastic bacteria in the total environment are diazotrophic, which highlights their value in the bioremediation of hydrocarbon contaminants.
    Dashti N; Ali N; Eliyas M; Khanafer M; Sorkhoh NA; Radwan SS
    Microbes Environ; 2015; 30(1):70-5. PubMed ID: 25740314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.
    Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM
    Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance.
    Ali N; Dashti N; Al-Mailem D; Eliyas M; Radwan S
    Environ Sci Pollut Res Int; 2012 Mar; 19(3):812-20. PubMed ID: 21948132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of
    Yu Y; Zhang Y; Zhao N; Guo J; Xu W; Ma M; Li X
    Int J Environ Res Public Health; 2020 Feb; 17(5):. PubMed ID: 32106510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of different remediation treatments on crude oil contaminated saline soil.
    Gao YC; Guo SH; Wang JN; Li D; Wang H; Zeng DH
    Chemosphere; 2014 Dec; 117():486-93. PubMed ID: 25240723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.
    Ali N; Eliyas M; Al-Sarawi H; Radwan SS
    Chemosphere; 2011 May; 83(9):1268-72. PubMed ID: 21507457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of aliphatic and aromatic hydrocarbons by bacteria isolated from Bahregan area.
    Shahidi Rizi MS; Emtiazi G; Akhavan Sepahy A
    Lett Appl Microbiol; 2024 May; 77(5):. PubMed ID: 38650069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of nitrogen-fixing bacteria in crude oil contaminated wetland ultisol.
    John RC; Itah AY; Essien JP; Ikpe DI
    Bull Environ Contam Toxicol; 2011 Sep; 87(3):343-53. PubMed ID: 21755289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.
    Mikolasch A; Omirbekova A; Schumann P; Reinhard A; Sheikhany H; Berzhanova R; Mukasheva T; Schauer F
    Appl Microbiol Biotechnol; 2015 May; 99(9):4071-84. PubMed ID: 25592733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.