BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21598917)

  • 1. Using the 19F NMR chemical shift anisotropy tensor to differentiate between the zigzag and chiral forms of fluorinated single-walled carbon nanotubes.
    Kumari A; Dorai K
    J Phys Chem A; 2011 Jun; 115(24):6543-50. PubMed ID: 21598917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Walczak B; Autschbach J
    J Phys Chem A; 2006 Nov; 110(43):11995-2004. PubMed ID: 17064188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation of fluorinated cholesterol in lipid bilayers analyzed by 19F tensor calculation and solid-state NMR.
    Matsumori N; Kasai Y; Oishi T; Murata M; Nomura K
    J Am Chem Soc; 2008 Apr; 130(14):4757-66. PubMed ID: 18341337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MNDO parameters for the prediction of 19F NMR chemical shifts in biologically relevant compounds.
    Williams DE; Peters MB; Wang B; Merz KM
    J Phys Chem A; 2008 Sep; 112(37):8829-38. PubMed ID: 18722416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes.
    Zurek E; Autschbach J
    J Am Chem Soc; 2004 Oct; 126(40):13079-88. PubMed ID: 15469306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-13 and fluorine-19 NMR spectroscopy of the supramolecular solid p-tert-butylcalix(4)arene.alpha,alpha,alpha-trifluorotoluene.
    Brouwer EB; Challoner R; Harris RK
    Solid State Nucl Magn Reson; 2000; 18(1-4):37-52. PubMed ID: 11270740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separating chemical shift and quadrupolar anisotropies via multiple-quantum NMR spectroscopy.
    Ash JT; Trease NM; Grandinetti PJ
    J Am Chem Soc; 2008 Aug; 130(33):10858-9. PubMed ID: 18652455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of 13C chemical shift anisotropy tensors and molecular order of 4-hexyloxybenzoic acid.
    Lobo NP; Prakash M; Narasimhaswamy T; Ramanathan KV
    J Phys Chem A; 2012 Jul; 116(28):7508-15. PubMed ID: 22721471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A density functional study of the 13C NMR chemical shifts in functionalized single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Autschbach J
    J Am Chem Soc; 2007 Apr; 129(14):4430-9. PubMed ID: 17371025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes.
    Dillon EP; Crouse CA; Barron AR
    ACS Nano; 2008 Jan; 2(1):156-64. PubMed ID: 19206559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the chemical shift anisotropy tensor of carbonyl backbone nuclei as a probe of secondary structure in proteins.
    Elavarasi SB; Kumari A; Dorai K
    J Phys Chem A; 2010 May; 114(18):5830-7. PubMed ID: 20402537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-ordered NMR spectroscopy in the structural characterization of functionalized carbon nanotubes.
    Marega R; Aroulmoji V; Dinon F; Vaccari L; Giordani S; Bianco A; Murano E; Prato M
    J Am Chem Soc; 2009 Jul; 131(25):9086-93. PubMed ID: 19459637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications.
    Precechtelová J; Padrta P; Munzarová ML; Sklenár V
    J Phys Chem B; 2008 Mar; 112(11):3470-8. PubMed ID: 18298109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.
    Singh P; Toma FM; Kumar J; Venkatesh V; Raya J; Prato M; Verma S; Bianco A
    Chemistry; 2011 Jun; 17(24):6772-80. PubMed ID: 21542041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
    Liu LV; Tian WQ; Chen YK; Zhang YA; Wang YA
    Nanoscale; 2010 Feb; 2(2):254-61. PubMed ID: 20644802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paramagnetic perturbation of the 19F NMR chemical shift in fluorinated cysteine by O2: a theoretical study.
    Li X; Rinkevicius Z; Tu Y; Tian H; Agren H
    J Phys Chem B; 2009 Aug; 113(31):10916-22. PubMed ID: 19606811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 59Co chemical shift anisotropy and quadrupole coupling for K3Co(CN)6 from MQMAS and MAS NMR spectroscopy.
    Nielsen UG; Jakobsen HJ; Skibsted J
    Solid State Nucl Magn Reson; 2001; 20(1-2):23-34. PubMed ID: 11529417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 1H/19F minicoil NMR probe for solid-state NMR: application to 5-fluoroindoles.
    Graether SP; DeVries JS; McDonald R; Rakovszky ML; Sykes BD
    J Magn Reson; 2006 Jan; 178(1):65-71. PubMed ID: 16198131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.