These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2159905)

  • 1. [A method for the chronic implantation of electrodes into the cortex of the medial surface of the hemispheres in the dog].
    Aleksandrov VG
    Fiziol Zh SSSR Im I M Sechenova; 1990 Jan; 76(1):133-4. PubMed ID: 2159905
    [No Abstract]   [Full Text] [Related]  

  • 2. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A method for recording and analysing the omega potential of subcortical brain structures during the development of immune reactions].
    Perepelkin PD; Klimenko VM
    Fiziol Zh SSSR Im I M Sechenova; 1988 May; 74(5):752-7. PubMed ID: 3417036
    [No Abstract]   [Full Text] [Related]  

  • 4. [Proceedings: New method for chronic implantation of cortical electrodes].
    Colin F; Van Nechel C; Deltenre P; Vereecke F
    Arch Int Physiol Biochim; 1975 May; 83(2):336-7. PubMed ID: 54071
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of selective attention in dogs by coherent-phase characteristics of cortical potentials in the broad frequency band 1-220 Hz].
    Dumenko VN; Kozlov MK
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2002; 52(4):428-40. PubMed ID: 12391869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A MEMS-based flexible multichannel ECoG-electrode array.
    Rubehn B; Bosman C; Oostenveld R; Fries P; Stieglitz T
    J Neural Eng; 2009 Jun; 6(3):036003. PubMed ID: 19436080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The dynamics of the potential of the oxidative-reductive status of the cerebral cortex developing as a reaction to implanted platinum electrodes].
    Shvets-Ténéta-Guriĭ TB; Mats VN; Kovchegova OB
    Fiziol Zh SSSR Im I M Sechenova; 1990 Mar; 76(3):315-23. PubMed ID: 2164963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A multichannel cortical electrode for recording the neuronal impulse activity of the human cerebral cortex].
    Gurchin FA; Kropotov IuD; Ponomarev VA; Sevost'ianov AV
    Fiziol Cheloveka; 1989; 15(4):174-6. PubMed ID: 2583392
    [No Abstract]   [Full Text] [Related]  

  • 11. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid prototyping for neuroscience and neural engineering.
    Tek P; Chiganos TC; Mohammed JS; Eddington DT; Fall CP; Ifft P; Rousche PJ
    J Neurosci Methods; 2008 Jul; 172(2):263-9. PubMed ID: 18565590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Electrical activity of the intestine in the conscious dog. Simultaneous pharmacologic investigation by chronic electrodes and electroperitoneography (author's transl)].
    Santini R; Brard E; Thouvenot J
    Pathol Biol (Paris); 1978; 26(5):219-24. PubMed ID: 358098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A device for the reversible cold switching off of individual areas of the cat cerebral cortex in an acute experiment].
    Abakarov AT; Dobroliubov VIu; Shvachkina MT
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(3):598-601. PubMed ID: 1656646
    [No Abstract]   [Full Text] [Related]  

  • 16. Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials.
    Cham JG; Branchaud EA; Nenadic Z; Greger B; Andersen RA; Burdick JW
    J Neurophysiol; 2005 Jan; 93(1):570-9. PubMed ID: 15229215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue.
    Rousche PJ; Normann RA
    Ann Biomed Eng; 1992; 20(4):413-22. PubMed ID: 1510293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Conditioned reflex and motivation].
    Vartanian GA; Lokhov MN
    Usp Fiziol Nauk; 1983; 14(4):43-65. PubMed ID: 6417923
    [No Abstract]   [Full Text] [Related]  

  • 19. An electrode system for chronic recording of direct cortical response.
    Sato T
    Nihon Seirigaku Zasshi; 1970 Dec; 32(12):824-5. PubMed ID: 5533842
    [No Abstract]   [Full Text] [Related]  

  • 20. In vivo extracellular recording of sympathetic ganglion activity in a chronic animal model.
    Lavian G; Kopelman D; Shenhav A; Konyukhov E; Gardi U; Zaretzky A; Shofti R; Finberg JP; Hashmonai M
    Clin Auton Res; 2003 Dec; 13 Suppl 1():I83-8. PubMed ID: 14673682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.