These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21599093)

  • 1. A microstructurally driven model for pulmonary artery tissue.
    Kao PH; Lammers SR; Tian L; Hunter K; Stenmark KR; Shandas R; Qi HJ
    J Biomech Eng; 2011 May; 133(5):051002. PubMed ID: 21599093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of an arterial constitutive model accounting for collagen content and crosslinking.
    Tian L; Wang Z; Liu Y; Eickhoff JC; Eliceiri KW; Chesler NC
    Acta Biomater; 2016 Feb; 31():276-287. PubMed ID: 26654765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
    Wang Y; Zeinali-Davarani S; Zhang Y
    J Biomech; 2016 Aug; 49(12):2358-65. PubMed ID: 26947034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanical role of de novo synthesized elastin in the urinary bladder wall.
    Wognum S; Schmidt DE; Sacks MS
    J Biomech Eng; 2009 Oct; 131(10):101018. PubMed ID: 19831488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of Glycosaminoglycans to Collagen Fiber Recruitment in Constitutive Modeling of Arterial Mechanics.
    Mattson JM; Wang Y; Zhang Y
    J Biomech; 2019 Jan; 82():211-219. PubMed ID: 30415914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves.
    Lammers SR; Kao PH; Qi HJ; Hunter K; Lanning C; Albietz J; Hofmeister S; Mecham R; Stenmark KR; Shandas R
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1451-9. PubMed ID: 18660454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmural variation in elastin fiber orientation distribution in the arterial wall.
    Yu X; Wang Y; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():745-753. PubMed ID: 28838859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
    Wang R; Yu X; Zhang Y
    Biomech Model Mechanobiol; 2021 Feb; 20(1):93-106. PubMed ID: 32705413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen.
    Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2019 Feb; 90():61-72. PubMed ID: 30352323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen.
    Chow MJ; Turcotte R; Lin CP; Zhang Y
    Biophys J; 2014 Jun; 106(12):2684-92. PubMed ID: 24940786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional variations in the nonlinearity and anisotropy of bovine aortic elastin.
    Agrawal V; Kollimada SA; Byju AG; Gundiah N
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1181-94. PubMed ID: 23397509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification.
    Daamen WF; Nillesen ST; Wismans RG; Reinhardt DP; Hafmans T; Veerkamp JH; van Kuppevelt TH
    Tissue Eng Part A; 2008 Mar; 14(3):349-60. PubMed ID: 18333787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets.
    Zhang W; Ayoub S; Liao J; Sacks MS
    Acta Biomater; 2016 Mar; 32():238-255. PubMed ID: 26712602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic model for crimped collagen fibrils.
    Freed AD; Doehring TC
    J Biomech Eng; 2005 Aug; 127(4):587-93. PubMed ID: 16121528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stumbling block in lung repair of emphysema: elastic fiber assembly.
    Shifren A; Mecham RP
    Proc Am Thorac Soc; 2006 Jul; 3(5):428-33. PubMed ID: 16799087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glucose on the biomechanical function of arterial elastin.
    Wang Y; Zeinali-Davarani S; Davis EC; Zhang Y
    J Mech Behav Biomed Mater; 2015 Sep; 49():244-54. PubMed ID: 26042769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages.
    Jadidi M; Sherifova S; Sommer G; Kamenskiy A; Holzapfel GA
    Acta Biomater; 2021 Feb; 121():461-474. PubMed ID: 33279711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential mechanical response and microstructural organization between non-human primate femoral and carotid arteries.
    Wang R; Raykin J; Li H; Gleason RL; Brewster LP
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1041-51. PubMed ID: 24532266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A validated 3D microstructure-based constitutive model of coronary artery adventitia.
    Chen H; Guo X; Luo T; Kassab GS
    J Appl Physiol (1985); 2016 Jul; 121(1):333-42. PubMed ID: 27174925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.