These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21599135)

  • 1. Determinantal correlations of Brownian paths in the plane with nonintersection condition on their loop-erased parts.
    Sato M; Katori M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041127. PubMed ID: 21599135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loop-Erased Walks and Random Matrices.
    Arista J; O'Connell N
    J Stat Phys; 2019; 177(3):528-567. PubMed ID: 31708593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probability distribution of the sizes of the largest erased loops in loop-erased random walks.
    Agrawal H; Dhar D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031108. PubMed ID: 11909030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling limit of vicious walks and two-matrix model.
    Katori M; Tanemura H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011105. PubMed ID: 12241339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depinning Transition of Charge-Density Waves: Mapping onto O(n) Symmetric ϕ^{4} Theory with n→-2 and Loop-Erased Random Walks.
    Wiese KJ; Fedorenko AA
    Phys Rev Lett; 2019 Nov; 123(19):197601. PubMed ID: 31765182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum distributions of bridges of noncolliding Brownian paths.
    Kobayashi N; Izumi M; Katori M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051102. PubMed ID: 19113090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loop-erased random walk on a percolation cluster is compatible with Schramm-Loewner evolution.
    Daryaei E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022129. PubMed ID: 25215710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large deviations of convex hulls of self-avoiding random walks.
    Schawe H; Hartmann AK; Majumdar SN
    Phys Rev E; 2018 Jun; 97(6-1):062159. PubMed ID: 30011525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions.
    Agrawal H; Dhar D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056115. PubMed ID: 11414969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal dimension of critical curves in the O(n)-symmetric ϕ^{4} model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models.
    Kompaniets M; Wiese KJ
    Phys Rev E; 2020 Jan; 101(1-1):012104. PubMed ID: 32069567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loop-erased random walk on a percolation cluster: crossover from Euclidean to fractal geometry.
    Daryaei E; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062101. PubMed ID: 25019719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonintersecting Brownian interfaces and Wishart random matrices.
    Nadal C; Majumdar SN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061117. PubMed ID: 19658483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimension of the loop-erased random walk in three dimensions.
    Wilson DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):062102. PubMed ID: 21230692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left passage probability of Schramm-Loewner Evolution.
    Najafi MN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062105. PubMed ID: 23848625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free Fermions and the Classical Compact Groups.
    Cunden FD; Mezzadri F; O'Connell N
    J Stat Phys; 2018; 171(5):768-801. PubMed ID: 31258183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-passage-time processes and subordinated Schramm-Loewner evolution.
    Nezhadhaghighi MG; Rajabpour MA; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011134. PubMed ID: 21867140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling analysis of random walks with persistence lengths: Application to self-avoiding walks.
    Granzotti CR; Martinez AS; da Silva MA
    Phys Rev E; 2016 May; 93(5):052116. PubMed ID: 27300839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random walks and Brownian motion: a method of computation for first-passage times and related quantities in confined geometries.
    Condamin S; Bénichou O; Moreau M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021111. PubMed ID: 17358317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained pseudo-Brownian motion and its application to image enhancement.
    Montagna R; Finlayson GD
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1677-88. PubMed ID: 21811330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Products of rectangular random matrices: singular values and progressive scattering.
    Akemann G; Ipsen JR; Kieburg M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052118. PubMed ID: 24329225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.