These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21599159)

  • 21. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gaussian field theory for the Brownian motion of a solvated particle.
    Speck T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):014103. PubMed ID: 23944593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles.
    Marzo A; Caleap M; Drinkwater BW
    Phys Rev Lett; 2018 Jan; 120(4):044301. PubMed ID: 29437423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces.
    Wang GM; Prabhakar R; Sevick EM
    Phys Rev Lett; 2009 Dec; 103(24):248303. PubMed ID: 20366238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Change in collective motion of colloidal particles driven by an optical vortex with driving force and spatial confinement.
    Saito K; Okubo S; Kimura Y
    Soft Matter; 2018 Jul; 14(29):6037-6042. PubMed ID: 29978882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of particle-wall interactions during particle free fall.
    Chein R; Liao W
    J Colloid Interface Sci; 2005 Aug; 288(1):104-13. PubMed ID: 15927568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistent correlation of constrained colloidal motion.
    Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031402. PubMed ID: 19391939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution detection of Brownian motion for quantitative optical tweezers experiments.
    Grimm M; Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021912. PubMed ID: 23005790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Torque detection using Brownian fluctuations.
    Volpe G; Petrov D
    Phys Rev Lett; 2006 Nov; 97(21):210603. PubMed ID: 17155733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microspheres viscous drag at a deformed fluid interface: particle's weight and electrical charges effects.
    Ben'MBarek N; Aschi A; Blanc C; Nobili M
    Eur Phys J E Soft Matter; 2021 Mar; 44(2):26. PubMed ID: 33689032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophoretic motion of a spherical particle in a converging-diverging nanotube.
    Qian S; Wang A; Afonien JK
    J Colloid Interface Sci; 2006 Nov; 303(2):579-92. PubMed ID: 16979648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DC dielectrophoretic particle-particle interactions and their relative motions.
    Ai Y; Qian S
    J Colloid Interface Sci; 2010 Jun; 346(2):448-54. PubMed ID: 20334869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of microparticles trapped in a perfect vortex beam.
    Chen M; Mazilu M; Arita Y; Wright EM; Dholakia K
    Opt Lett; 2013 Nov; 38(22):4919-22. PubMed ID: 24322166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brownian motion in a nonhomogeneous force field and photonic force microscope.
    Volpe G; Volpe G; Petrov D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061118. PubMed ID: 18233825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires.
    Irrera A; Magazzù A; Artoni P; Simpson SH; Hanna S; Jones PH; Priolo F; Gucciardi PG; Maragò OM
    Nano Lett; 2016 Jul; 16(7):4181-8. PubMed ID: 27280642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interface and vortex motion in the two-component complex dissipative Ginzburg-Landau equation in two-dimensional space.
    Yabunaka S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042925. PubMed ID: 25375585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Optical Vortex Trapping of Plasmonic Nanostructure.
    Liaw JW; Chien CW; Liu KC; Ku YC; Kuo MK
    Sci Rep; 2018 Aug; 8(1):12673. PubMed ID: 30140032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.