These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 21599204)
1. Nonlinear dynamics and rheology of active fluids: simulations in two dimensions. Fielding SM; Marenduzzo D; Cates ME Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041910. PubMed ID: 21599204 [TBL] [Abstract][Full Text] [Related]
2. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations. Marenduzzo D; Orlandini E; Cates ME; Yeomans JM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031921. PubMed ID: 17930285 [TBL] [Abstract][Full Text] [Related]
3. Comparison of low-amplitude oscillatory shear in experimental and computational studies of model foams. Lundberg M; Krishan K; Xu N; O'Hern CS; Dennin M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041405. PubMed ID: 19518231 [TBL] [Abstract][Full Text] [Related]
4. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term. Bonelli F; Gonnella G; Tiribocchi A; Marenduzzo D Eur Phys J E Soft Matter; 2016 Jan; 39(1):1. PubMed ID: 26769011 [TBL] [Abstract][Full Text] [Related]
5. Variable-amplitude oscillatory shear response of amorphous materials. Perchikov N; Bouchbinder E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062307. PubMed ID: 25019776 [TBL] [Abstract][Full Text] [Related]
6. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region. Shojaaee Z; Roux JN; Chevoir F; Wolf DE Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011301. PubMed ID: 23005405 [TBL] [Abstract][Full Text] [Related]
7. Inhomogeneous shear flows in soft jammed materials with tunable attractive forces. Chaudhuri P; Berthier L; Bocquet L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021503. PubMed ID: 22463215 [TBL] [Abstract][Full Text] [Related]
8. Phase-separating binary fluids under oscillatory shear. Xu A; Gonnella G; Lamura A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056105. PubMed ID: 12786218 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of nonlinear velocity profiles in athermal systems undergoing planar shear flow. Xu N; O'Hern CS; Kondic L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041504. PubMed ID: 16383382 [TBL] [Abstract][Full Text] [Related]
10. Multiscale modeling of polymer rheology. De S; Fish J; Shephard MS; Keblinski P; Kumar SK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030801. PubMed ID: 17025582 [TBL] [Abstract][Full Text] [Related]
11. Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics. Hemingway EJ; Cates ME; Fielding SM Phys Rev E; 2016 Mar; 93(3):032702. PubMed ID: 27078422 [TBL] [Abstract][Full Text] [Related]
12. Minimal model for chaotic shear banding in shear thickening fluids. Aradian A; Cates ME Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041508. PubMed ID: 16711810 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional vesicle dynamics under shear flow: effect of confinement. Kaoui B; Harting J; Misbah C Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066319. PubMed ID: 21797489 [TBL] [Abstract][Full Text] [Related]
14. Measurements of the yield stress in frictionless granular systems. Xu N; O'Hern CS Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061303. PubMed ID: 16906818 [TBL] [Abstract][Full Text] [Related]
15. Velocity profiles in repulsive athermal systems under shear. Xu N; O'Hern CS; Kondic L Phys Rev Lett; 2005 Jan; 94(1):016001. PubMed ID: 15698098 [TBL] [Abstract][Full Text] [Related]
16. Flow states of two dimensional active gels driven by external shear. Luo W; Baskaran A; Pelcovits RA; Powers TR Soft Matter; 2024 Jan; 20(4):738-753. PubMed ID: 38168972 [TBL] [Abstract][Full Text] [Related]
17. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909 [TBL] [Abstract][Full Text] [Related]
18. Multiparticle collision dynamics modeling of viscoelastic fluids. Tao YG; Götze IO; Gompper G J Chem Phys; 2008 Apr; 128(14):144902. PubMed ID: 18412477 [TBL] [Abstract][Full Text] [Related]