These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21599209)

  • 1. Electrostatic self-energy of a partially formed spherical shell in salt solution: application to stability of tethered and fluid shells as models for viruses and vesicles.
    Božič AL; Šiber A; Podgornik R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041916. PubMed ID: 21599209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.
    Hallez Y; Meireles M
    Langmuir; 2016 Oct; 32(40):10430-10444. PubMed ID: 27623196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge regulation in ionic solutions: thermal fluctuations and Kirkwood-Schumaker interactions.
    Adžić N; Podgornik R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022715. PubMed ID: 25768539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions between diffuse soft multi-layered (bio)particles: beyond Debye-Hückel approximation and Deryagin formulation.
    Duval JF; Merlin J; Narayana PA
    Phys Chem Chem Phys; 2011 Jan; 13(3):1037-53. PubMed ID: 21072398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.
    Boschitsch AH; Fenley MO
    J Comput Chem; 2007 Apr; 28(5):909-21. PubMed ID: 17238171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dressed counterions: strong electrostatic coupling in the presence of salt.
    Kanduc M; Naji A; Forsman J; Podgornik R
    J Chem Phys; 2010 Mar; 132(12):124701. PubMed ID: 20370139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of dissolved salts in thermophoresis of DNA: lattice-Boltzmann-based simulations.
    Hammack A; Chen YL; Pearce JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031915. PubMed ID: 21517533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational behaviors of a charged-neutral star micelle in salt-free solution.
    Deng M; Jiang Y; Li X; Wang L; Liang H
    Phys Chem Chem Phys; 2010 Jun; 12(23):6135-9. PubMed ID: 20405083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Like-charged protein-polyelectrolyte complexation driven by charge patches.
    Yigit C; Heyda J; Ballauff M; Dzubiella J
    J Chem Phys; 2015 Aug; 143(6):064905. PubMed ID: 26277164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic screening and energy barriers of ions in low-dielectric membranes.
    Cherstvy AG
    J Phys Chem B; 2006 Jul; 110(29):14503-6. PubMed ID: 16854162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic free energy and its variations in implicit solvent models.
    Che J; Dzubiella J; Li B; McCammon JA
    J Phys Chem B; 2008 Mar; 112(10):3058-69. PubMed ID: 18275182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
    Ubbink J; Khokhlov AR
    J Chem Phys; 2004 Mar; 120(11):5353-65. PubMed ID: 15267409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies.
    Bertonati C; Honig B; Alexov E
    Biophys J; 2007 Mar; 92(6):1891-9. PubMed ID: 17208980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic stress and pore nucleation in charged biological nanoshells and capsids.
    Colla T; Bakhshandeh A; Levin Y
    Soft Matter; 2020 Mar; 16(9):2390-2405. PubMed ID: 32067009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic effects in DNA stretching.
    Tkachenko AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041801. PubMed ID: 17155082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatics-driven shape transitions in soft shells.
    Jadhao V; Thomas CK; Olvera de la Cruz M
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12673-8. PubMed ID: 25136119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying a potential across a biomembrane: electrostatic contribution to the bending rigidity and membrane instability.
    Ambjörnsson T; Lomholt MA; Hansen PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051916. PubMed ID: 17677107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic shock and the strength of viral capsids.
    Cordova A; Deserno M; Gelbart WM; Ben-Shaul A
    Biophys J; 2003 Jul; 85(1):70-4. PubMed ID: 12829465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic and dielectric response of charged colloids in electrolyte solutions to external electric fields.
    Zhou J; Schmitz R; Dünweg B; Schmid F
    J Chem Phys; 2013 Jul; 139(2):024901. PubMed ID: 23862959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.