These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 21599222)
1. Directed motion of C60 on a graphene sheet subjected to a temperature gradient. Lohrasebi A; Neek-Amal M; Ejtehadi MR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):042601. PubMed ID: 21599222 [TBL] [Abstract][Full Text] [Related]
2. Programmable Transport of C60 by Straining Graphene Substrate. Vaezi M; Nejat Pishkenari H; Ejtehadi MR Langmuir; 2023 Mar; 39(12):4483-4494. PubMed ID: 36926912 [TBL] [Abstract][Full Text] [Related]
3. Diffusive motion of C60 on a graphene sheet. Neek-Amal M; Abedpour N; Rasuli SN; Naji A; Ejtehadi MR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051605. PubMed ID: 21230486 [TBL] [Abstract][Full Text] [Related]
5. Thermal Gradients on Graphene to Drive Nanoflake Motion. Becton M; Wang X J Chem Theory Comput; 2014 Feb; 10(2):722-30. PubMed ID: 26580049 [TBL] [Abstract][Full Text] [Related]
6. Self-propelled directed transport of C60 fullerene on the surface of the cone-shaped carbon nanotubes. Vaezi M; Nejat Pishkenari H Sci Rep; 2024 Sep; 14(1):21630. PubMed ID: 39284904 [TBL] [Abstract][Full Text] [Related]
7. Temperature gradient-driven motion and assembly of two-dimensional (2D) materials on the liquid surface: a theoretical framework and molecular dynamics simulation. Wen Y; Liu Q; Liu Y Phys Chem Chem Phys; 2020 Oct; 22(41):24097-24108. PubMed ID: 33079103 [TBL] [Abstract][Full Text] [Related]
8. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene. Huang J; Han Q Nanotechnology; 2016 Apr; 27(15):155501. PubMed ID: 26934619 [TBL] [Abstract][Full Text] [Related]
9. Unidirectional motion of a water nanodroplet subjected to a surface energy gradient. Kou J; Mei M; Lu H; Wu F; Fan J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056301. PubMed ID: 23004857 [TBL] [Abstract][Full Text] [Related]
10. Directional control of surface rolling molecules exploiting non-uniform heat-induced substrates. Nemati A; Nejat Pishkenari H; Meghdari A; Ge SS Phys Chem Chem Phys; 2020 Dec; 22(46):26887-26900. PubMed ID: 33205804 [TBL] [Abstract][Full Text] [Related]
11. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field. Srinivasan SG; van Duin AC J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282 [TBL] [Abstract][Full Text] [Related]
12. Toward steering the motion of surface rolling molecular machines by straining graphene substrate. Vaezi M; Nejat Pishkenari H Sci Rep; 2023 Nov; 13(1):20816. PubMed ID: 38012233 [TBL] [Abstract][Full Text] [Related]
16. Effect of surface roughness on the static and dynamic properties of water adsorbed on graphene. Gordillo MC; Martà J J Phys Chem B; 2010 Apr; 114(13):4583-9. PubMed ID: 20235553 [TBL] [Abstract][Full Text] [Related]
17. Design of chemically propelled nanodimer motors. Tao YG; Kapral R J Chem Phys; 2008 Apr; 128(16):164518. PubMed ID: 18447470 [TBL] [Abstract][Full Text] [Related]
18. Molecular mobility on graphene nanoroads. Jafary-Zadeh M; Zhang YW Sci Rep; 2015 Aug; 5():12848. PubMed ID: 26242303 [TBL] [Abstract][Full Text] [Related]
19. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Song P; Liu L; Huang G; Yu Y; Guo Q Nanotechnology; 2013 Dec; 24(50):505706. PubMed ID: 24270978 [TBL] [Abstract][Full Text] [Related]
20. Measuring nonequilibrium vesicle dynamics in neurons under tension. Ahmed WW; Williams BJ; Silver AM; Saif TA Lab Chip; 2013 Feb; 13(4):570-8. PubMed ID: 23303380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]