These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21599330)

  • 1. Design of photonic crystals with multiple and combined band gaps.
    Men H; Nguyen NC; Freund RM; Lim KM; Parrilo PA; Peraire J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046703. PubMed ID: 21599330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic crystal topological design for polarized and polarization-independent band gaps by gradient-free topology optimization.
    Yan Y; Liu P; Zhang X; Luo Y
    Opt Express; 2021 Aug; 29(16):24861-24883. PubMed ID: 34614832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximizing band gaps in two-dimensional photonic crystals in square lattices.
    Cheng XL; Yang J
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2314-9. PubMed ID: 24322930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps.
    Wu L; Zhuang F; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026612. PubMed ID: 12636846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic topology optimization of solid-solid phononic crystals for multiple separate band-gaps with different polarizations.
    Liu ZF; Wu B; He CF
    Ultrasonics; 2016 Feb; 65():249-57. PubMed ID: 26456279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect.
    Takeda H; Yoshino K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016605. PubMed ID: 14995734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of one-dimensional photonic crystals based on the incident angle domain.
    Huang B; Gu P; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046601. PubMed ID: 14683059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals.
    Stojić N; Glimm J; Deng Y; Haus JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056614. PubMed ID: 11736123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.
    Men H; Lee KY; Freund RM; Peraire J; Johnson SG
    Opt Express; 2014 Sep; 22(19):22632-48. PubMed ID: 25321732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic band gaps based on tetragonal lattices of slanted pores.
    Toader O; Berciu M; John S
    Phys Rev Lett; 2003 Jun; 90(23):233901. PubMed ID: 12857259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration.
    Chern RL; Chang CC; Chang CC; Hwang RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026704. PubMed ID: 14525145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.
    Vatanabe SL; Paulino GH; Silva EC
    J Acoust Soc Am; 2014 Aug; 136(2):494-501. PubMed ID: 25096084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.
    Tanaka Y; Kawamoto Y; Fujita M; Noda S
    Opt Express; 2013 Aug; 21(17):20111-8. PubMed ID: 24105557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.
    Stimulak M; Ravnik M
    Soft Matter; 2014 Sep; 10(33):6339-46. PubMed ID: 25034860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic band-gap formation by optical-phase-mask lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046610. PubMed ID: 16711945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.