BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21599338)

  • 1. Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations.
    Bader P; Blanes S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046711. PubMed ID: 21599338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap.
    Dion CM; Cancès E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046706. PubMed ID: 12786528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical method for evolving the dipolar projected Gross-Pitaevskii equation.
    Blakie PB; Ticknor C; Bradley AS; Martin AM; Davis MJ; Kawaguchi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016703. PubMed ID: 19658834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
    Thalhammer M; Abhau J
    J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056708. PubMed ID: 18233791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical method for the stochastic projected Gross-Pitaevskii equation.
    Rooney SJ; Blakie PB; Bradley AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013302. PubMed ID: 24580355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical method for evolving the projected Gross-Pitaevskii equation.
    Blakie PB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026704. PubMed ID: 18850970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symplectic splitting operator methods for the time-dependent Schrodinger equation.
    Blanes S; Casas F; Murua A
    J Chem Phys; 2006 Jun; 124(23):234105. PubMed ID: 16821905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics.
    Mocz P; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053304. PubMed ID: 26066276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Time Propagation for Time-dependent Schrödinger equations.
    Auzinger W; Hofstätter H; Koch O; Quell M
    Int J Appl Comput Math; 2021; 7(1):6. PubMed ID: 33381631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency and accuracy of numerical solutions to the time-dependent Schrödinger equation.
    van Dijk W; Brown J; Spyksma K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056703. PubMed ID: 22181543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap.
    Chin SA; Krotscheck E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036705. PubMed ID: 16241612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional quantum trajectories: applications of the derivative propagation method.
    Trahan CJ; Wyatt RE; Poirier B
    J Chem Phys; 2005 Apr; 122(16):164104. PubMed ID: 15945669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent Schrödinger equation: Application to local control theory.
    Roulet J; Vaníček J
    J Chem Phys; 2021 Apr; 154(15):154106. PubMed ID: 33887925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods.
    Gómez Pueyo A; Blanes S; Castro A
    J Chem Theory Comput; 2020 Mar; 16(3):1420-1430. PubMed ID: 31999460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional oscillator in time-dependent fields: comparison of some exact and approximate calculations.
    Chuluunbaatar O; Gusev AA; Vinitsky SI; Derbov VL; Galtbayar A; Zhanlav T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017701. PubMed ID: 18764088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation.
    Gammal A; Frederico T; Tomio L
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2421-4. PubMed ID: 11970045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saturable Lorentz model for fully explicit three-dimensional modeling of nonlinear optics.
    Varin C; Bart G; Emms R; Brabec T
    Opt Express; 2015 Feb; 23(3):2686-95. PubMed ID: 25836131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide localized solitons in systems with time- and space-modulated nonlinearities.
    Meza LE; Dutra Ade S; Hott MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026605. PubMed ID: 23005874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H-Theorem in an Isolated Quantum Harmonic Oscillator.
    Hsueh CH; Cheng CH; Horng TL; Wu WC
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.