These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 21599386)
1. Dynamic stimulation of quantum coherence in systems of lattice bosons. Robertson A; Galitski VM; Refael G Phys Rev Lett; 2011 Apr; 106(16):165701. PubMed ID: 21599386 [TBL] [Abstract][Full Text] [Related]
2. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110 [TBL] [Abstract][Full Text] [Related]
3. Direct mapping of the finite temperature phase diagram of strongly correlated quantum models. Zhou Q; Kato Y; Kawashima N; Trivedi N Phys Rev Lett; 2009 Aug; 103(8):085701. PubMed ID: 19792739 [TBL] [Abstract][Full Text] [Related]
4. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system. Tomita T; Nakajima S; Danshita I; Takasu Y; Takahashi Y Sci Adv; 2017 Dec; 3(12):e1701513. PubMed ID: 29291246 [TBL] [Abstract][Full Text] [Related]
5. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice. Bakhtiari MR; Hemmerich A; Ritsch H; Thorwart M Phys Rev Lett; 2015 Mar; 114(12):123601. PubMed ID: 25860742 [TBL] [Abstract][Full Text] [Related]
6. Staggered-vortex superfluid of ultracold bosons in an optical lattice. Lim LK; Smith CM; Hemmerich A Phys Rev Lett; 2008 Apr; 100(13):130402. PubMed ID: 18517921 [TBL] [Abstract][Full Text] [Related]
7. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704 [TBL] [Abstract][Full Text] [Related]
8. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Hadzibabic Z; Krüger P; Cheneau M; Battelier B; Dalibard J Nature; 2006 Jun; 441(7097):1118-21. PubMed ID: 16810249 [TBL] [Abstract][Full Text] [Related]
9. Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model. Kollath C; Läuchli AM; Altman E Phys Rev Lett; 2007 May; 98(18):180601. PubMed ID: 17501552 [TBL] [Abstract][Full Text] [Related]
10. Negative absolute temperature for motional degrees of freedom. Braun S; Ronzheimer JP; Schreiber M; Hodgman SS; Rom T; Bloch I; Schneider U Science; 2013 Jan; 339(6115):52-5. PubMed ID: 23288533 [TBL] [Abstract][Full Text] [Related]
11. Superfluid-insulator transition in a moving system of interacting bosons. Altman E; Polkovnikov A; Demler E; Halperin BI; Lukin MD Phys Rev Lett; 2005 Jul; 95(2):020402. PubMed ID: 16090666 [TBL] [Abstract][Full Text] [Related]
12. Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms. Will S; Iyer D; Rigol M Nat Commun; 2015 Jan; 6():6009. PubMed ID: 25625799 [TBL] [Abstract][Full Text] [Related]
13. Exact relaxation in a class of nonequilibrium quantum lattice systems. Cramer M; Dawson CM; Eisert J; Osborne TJ Phys Rev Lett; 2008 Jan; 100(3):030602. PubMed ID: 18232957 [TBL] [Abstract][Full Text] [Related]
14. Phase-slip-induced dissipation in an atomic Bose-Hubbard system. McKay D; White M; Pasienski M; DeMarco B Nature; 2008 May; 453(7191):76-9. PubMed ID: 18451857 [TBL] [Abstract][Full Text] [Related]
15. Possibility of a first-order superfluid-Mott-insulator transition of spinor bosons in an optical lattice. Kimura T; Tsuchiya S; Kurihara S Phys Rev Lett; 2005 Mar; 94(11):110403. PubMed ID: 15903833 [TBL] [Abstract][Full Text] [Related]
16. Fractional Mott insulator-to-superfluid transition of Bose-Hubbard model in a trimerized Kagomé optical lattice. Chen QH; Li P; Su H J Phys Condens Matter; 2016 Jun; 28(25):256001. PubMed ID: 27165440 [TBL] [Abstract][Full Text] [Related]
17. Quantum phases of the extended Bose-Hubbard hamiltonian: possibility of a supersolid state of cold atoms in optical lattices. Scarola VW; Das Sarma S Phys Rev Lett; 2005 Jul; 95(3):033003. PubMed ID: 16090740 [TBL] [Abstract][Full Text] [Related]
18. Nonequilibrium dynamics of the Bose-Hubbard model: a projection-operator approach. Trefzger C; Sengupta K Phys Rev Lett; 2011 Mar; 106(9):095702. PubMed ID: 21405638 [TBL] [Abstract][Full Text] [Related]
19. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases. Vorberg D; Wustmann W; Schomerus H; Ketzmerick R; Eckardt A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062119. PubMed ID: 26764644 [TBL] [Abstract][Full Text] [Related]
20. Finite-temperature phase diagram of hard-core bosons in two dimensions. Schmid G; Todo S; Troyer M; Dorneich A Phys Rev Lett; 2002 Apr; 88(16):167208. PubMed ID: 11955263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]