BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21599650)

  • 1. A diversity of SERCA Ca2+ pump inhibitors.
    Michelangeli F; East JM
    Biochem Soc Trans; 2011 Jun; 39(3):789-97. PubMed ID: 21599650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The widely utilized brominated flame retardant tetrabromobisphenol A (TBBPA) is a potent inhibitor of the SERCA Ca2+ pump.
    Ogunbayo OA; Michelangeli F
    Biochem J; 2007 Dec; 408(3):407-15. PubMed ID: 17784851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total synthesis of two novel subpicomolar sarco/endoplasmatic reticulum Ca2+-ATPase inhibitors designed by an analysis of the binding site of thapsigargin.
    Søhoel H; Liljefors T; Ley SV; Oliver SF; Antonello A; Smith MD; Olsen CE; Isaacs JT; Christensen SB
    J Med Chem; 2005 Nov; 48(22):7005-11. PubMed ID: 16250659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and total synthesis of unnatural analogues of the sub-nanomolar SERCA inhibitor thapsigargin.
    Andrews SP; Tait MM; Ball M; Ley SV
    Org Biomol Chem; 2007 May; 5(9):1427-36. PubMed ID: 17464412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving cardiac Ca⁺² transport into the sarcoplasmic reticulum in heart failure: lessons from the ubiquitous SERCA2b Ca⁺² pump.
    Vangheluwe P; Wuytack F
    Biochem Soc Trans; 2011 Jun; 39(3):781-7. PubMed ID: 21599649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of inhibition of Ca2+-transport activity of sarcoplasmic reticulum Ca2+-ATPase by anisodamine.
    Pang Y; Li X; Qin S; Zhang H; Chen J
    Indian J Biochem Biophys; 2006 Dec; 43(6):351-9. PubMed ID: 17285799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric modulation of the sarcoplasmic reticulum Ca
    Saleh N; Wang Y; Nissen P; Lindorff-Larsen K
    Phys Chem Chem Phys; 2019 Oct; 21(39):21991-21995. PubMed ID: 31552962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular determinants of thapsigargin binding by SERCA Ca2+-ATPase: a computational docking study.
    Paula S; Ball WJ
    Proteins; 2004 Aug; 56(3):595-606. PubMed ID: 15229891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and SERCA activities of structurally simplified cyclopiazonic acid analogues.
    Yao S; Gallenkamp D; Wölfel K; Lüke B; Schindler M; Scherkenbeck J
    Bioorg Med Chem; 2011 Aug; 19(15):4669-78. PubMed ID: 21719297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regucalcin (RGN/SMP30) alters agonist- and thapsigargin-induced cytosolic [Ca2+] transients in cells by increasing SERCA Ca(2+)ATPase levels.
    Lai P; Yip NC; Michelangeli F
    FEBS Lett; 2011 Jul; 585(14):2291-4. PubMed ID: 21684279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide inhibitors use two related mechanisms to alter the apparent calcium affinity of the sarcoplasmic reticulum calcium pump.
    Afara MR; Trieber CA; Ceholski DK; Young HS
    Biochemistry; 2008 Sep; 47(36):9522-30. PubMed ID: 18702513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticancer ruthenium(III) complex KP1019 interferes with ATP-dependent Ca2+ translocation by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA).
    Sadafi FZ; Massai L; Bartolommei G; Moncelli MR; Messori L; Tadini-Buoninsegni F
    ChemMedChem; 2014 Aug; 9(8):1660-4. PubMed ID: 24920093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion of the Ca2+-pump captured.
    Yokokawa M; Takeyasu K
    FEBS J; 2011 Sep; 278(17):3025-31. PubMed ID: 21707923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
    Møller JV; Olesen C; Winther AM; Nissen P
    Q Rev Biophys; 2010 Nov; 43(4):501-66. PubMed ID: 20809990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thapsigargin binds to and inhibits the cloned vanilloid receptor-1.
    Tóth A; Kedei N; Szabó T; Wang Y; Blumberg PM
    Biochem Biophys Res Commun; 2002 May; 293(2):777-82. PubMed ID: 12054538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing nucleotide-binding effects on backbone dynamics and folding of the nucleotide-binding domain of the sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase.
    Abu-Abed M; Millet O; MacLennan DH; Ikura M
    Biochem J; 2004 Apr; 379(Pt 2):235-42. PubMed ID: 14987197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of sarco/endoplasmic and plasma membrane calcium ATPase gene expression by calcium in cultured human lens epithelial cells.
    Marian MJ; Mukhopadhyay P; Borchman D; Tang D; Paterson CA
    Cell Calcium; 2007 Jan; 41(1):87-95. PubMed ID: 16875731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities.
    Aguayo-Ortiz R; Espinoza-Fonseca LM
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32532023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of sarcoplasmic reticulum Ca2+ transport and Ca2+ ATPase enzymatic properties using mouse cardiac tissue homogenates.
    Ji Y; Loukianov E; Periasamy M
    Anal Biochem; 1999 May; 269(2):236-44. PubMed ID: 10221995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) as a potential target for hypericin--a theoretical study.
    Eriksson ES; Eriksson LA
    Phys Chem Chem Phys; 2012 Sep; 14(36):12637-46. PubMed ID: 22892582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.