These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 21599925)

  • 1. The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal.
    Schreiber F; Beutler M; Enning D; Lamprecht-Grandio M; Zafra O; González-Pastor JE; de Beer D
    BMC Microbiol; 2011 May; 11():111. PubMed ID: 21599925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone.
    Ren D; Sims JJ; Wood TK
    Lett Appl Microbiol; 2002; 34(4):293-9. PubMed ID: 11940163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Biofilm Aging and Dispersal in
    Bartolini M; Cogliati S; Vileta D; Bauman C; Rateni L; Leñini C; Argañaraz F; Francisco M; Villalba JM; Steil L; Völker U; Grau R
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis.
    Grau RR; de Oña P; Kunert M; Leñini C; Gallegos-Monterrosa R; Mhatre E; Vileta D; Donato V; Hölscher T; Boland W; Kuipers OP; Kovács ÁT
    mBio; 2015 Jul; 6(4):e00581. PubMed ID: 26152584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous expression of bacterial nitric oxide synthase gene: a potential biological method to control biofilm development in the environment.
    Liu P; Huang Q; Chen W
    Can J Microbiol; 2012 Mar; 58(3):336-44. PubMed ID: 22379956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity.
    Reverdy A; Chen Y; Hunter E; Gozzi K; Chai Y
    PLoS One; 2018; 13(9):e0204687. PubMed ID: 30265683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays.
    Stanley NR; Britton RA; Grossman AD; Lazazzera BA
    J Bacteriol; 2003 Mar; 185(6):1951-7. PubMed ID: 12618459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis.
    Yu Y; Yan F; He Y; Qin Y; Chen Y; Chai Y; Guo JH
    Microbiology (Reading); 2018 May; 164(5):848-862. PubMed ID: 29629859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of manganese on biofilm development of Bacillus subtilis.
    Mhatre E; Troszok A; Gallegos-Monterrosa R; Lindstädt S; Hölscher T; Kuipers OP; Kovács ÁT
    Microbiology (Reading); 2016 Aug; 162(8):1468-1478. PubMed ID: 27267987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitroxides on swarming motility and biofilm formation, multicellular behaviors in Pseudomonas aeruginosa.
    de la Fuente-Núñez C; Reffuveille F; Fairfull-Smith KE; Hancock RE
    Antimicrob Agents Chemother; 2013 Oct; 57(10):4877-81. PubMed ID: 23877682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of
    Kobayashi K
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30718304
    [No Abstract]   [Full Text] [Related]  

  • 12. 6S-2 RNA deletion in the undomesticated
    Thüring M; Ganapathy S; Schlüter MAC; Lechner M; Hartmann RK
    RNA Biol; 2021 Jan; 18(1):79-92. PubMed ID: 32862759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pivotal role for the response regulator DegU in controlling multicellular behaviour.
    Murray EJ; Kiley TB; Stanley-Wall NR
    Microbiology (Reading); 2009 Jan; 155(Pt 1):1-8. PubMed ID: 19118340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Remodeling during Biofilm Development of Bacillus subtilis.
    Pisithkul T; Schroeder JW; Trujillo EA; Yeesin P; Stevenson DM; Chaiamarit T; Coon JJ; Wang JD; Amador-Noguez D
    mBio; 2019 May; 10(3):. PubMed ID: 31113899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis.
    Connelly MB; Young GM; Sloma A
    J Bacteriol; 2004 Jul; 186(13):4159-67. PubMed ID: 15205417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani.
    Luo C; Zhou H; Zou J; Wang X; Zhang R; Xiang Y; Chen Z
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1897-910. PubMed ID: 25398282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the Genetic Features Involved in
    Dergham Y; Sanchez-Vizuete P; Le Coq D; Deschamps J; Bridier A; Hamze K; Briandet R
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33803642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis.
    Kimura T; Kobayashi K
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32393519
    [No Abstract]   [Full Text] [Related]  

  • 19. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.
    Bridier A; Le Coq D; Dubois-Brissonnet F; Thomas V; Aymerich S; Briandet R
    PLoS One; 2011 Jan; 6(1):e16177. PubMed ID: 21267464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.
    Rao M; Smith BC; Marletta MA
    mBio; 2015 May; 6(3):e00206-15. PubMed ID: 25944856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.