These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21600031)

  • 1. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy.
    Masia L; Frascarelli F; Morasso P; Di Rosa G; Petrarca M; Castelli E; Cappa P
    J Neuroeng Rehabil; 2011 May; 8():28. PubMed ID: 21600031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal adaptation in children affected by cerebral palsy to robot generated dynamic environment.
    Masia L; Frascarelli F; Morasso P; Di Rosa G; Petrarca M; Castelli E; Cappa P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3410-3. PubMed ID: 21097248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability.
    Casadio M; Sanguineti V; Morasso P; Solaro C
    Mult Scler; 2008 Apr; 14(3):330-42. PubMed ID: 18208874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of arm movement in children with cerebral palsy when using computer-generated exercise games.
    Weightman A; Preston N; Levesley M; Bhakta B; Holt R; Mon-Williams M
    Disabil Rehabil Assist Technol; 2014 May; 9(3):219-25. PubMed ID: 23597314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greater reliance on impedance control in the nondominant arm compared with the dominant arm when adapting to a novel dynamic environment.
    Schabowsky CN; Hidler JM; Lum PS
    Exp Brain Res; 2007 Oct; 182(4):567-77. PubMed ID: 17611744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot Reinforcement and Error-Based Movement Learning in Infants With and Without Cerebral Palsy.
    Kolobe THA; Fagg AH
    Phys Ther; 2019 Jun; 99(6):677-688. PubMed ID: 31155667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex.
    Hunter T; Sacco P; Nitsche MA; Turner DL
    J Physiol; 2009 Jun; 587(Pt 12):2949-61. PubMed ID: 19403605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of kinematic redundancy in adaptation of reaching.
    Yang JF; Scholz JP; Latash ML
    Exp Brain Res; 2007 Jan; 176(1):54-69. PubMed ID: 16874517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of reaching in a virtual environment in typically developing children and children with mild unilateral cerebral palsy.
    Robert MT; Levin MF
    Dev Med Child Neurol; 2018 Apr; 60(4):382-390. PubMed ID: 29427357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-limb interference during bimanual adaptation to dynamic environments.
    Casadio M; Sanguineti V; Squeri V; Masia L; Morasso P
    Exp Brain Res; 2010 May; 202(3):693-707. PubMed ID: 20174919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial.
    Gilliaux M; Renders A; Dispa D; Holvoet D; Sapin J; Dehez B; Detrembleur C; Lejeune TM; Stoquart G
    Neurorehabil Neural Repair; 2015 Feb; 29(2):183-92. PubMed ID: 25015650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of motor adaptation during constrained, multi-joint, arm movements.
    Scheidt RA; Reinkensmeyer DJ; Conditt MA; Rymer WZ; Mussa-Ivaldi FA
    J Neurophysiol; 2000 Aug; 84(2):853-62. PubMed ID: 10938312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered sense of Agency in children with spastic cerebral palsy.
    Ritterband-Rosenbaum A; Christensen MS; Kliim-Due M; Petersen LZ; Rasmussen B; Nielsen JB
    BMC Neurol; 2011 Nov; 11():150. PubMed ID: 22129483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment.
    Cesqui B; Macrì G; Dario P; Micera S
    J Neuroeng Rehabil; 2008 Nov; 5():31. PubMed ID: 19019228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone.
    de Paula JN; de Mello Monteiro CB; da Silva TD; Capelini CM; de Menezes LDC; Massetti T; Tonks J; Watson S; Nicolai Ré AH
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):609-613. PubMed ID: 29092683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an ankle robotic device for motor performance and motor learning evaluation.
    Martelli F; Palermo E; Del Prete Z; Rossi S
    Heliyon; 2020 Jan; 6(1):e03262. PubMed ID: 32021934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy.
    Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K
    Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.