These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21600191)

  • 1. Effects of a bacterial trehalose lipid on phosphatidylglycerol membranes.
    Ortiz A; Teruel JA; Manresa Á; Espuny MJ; Marqués A; Aranda FJ
    Biochim Biophys Acta; 2011 Aug; 1808(8):2067-72. PubMed ID: 21600191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength.
    Teruel JA; Ortiz A; Aranda FJ
    Chem Phys Lipids; 2014 Jul; 181():34-9. PubMed ID: 24704470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes.
    Ortiz A; Teruel JA; Espuny MJ; Marqués A; Manresa A; Aranda FJ
    Chem Phys Lipids; 2009 Mar; 158(1):46-53. PubMed ID: 19046957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes.
    Ortiz A; Teruel JA; Espuny MJ; Marqués A; Manresa A; Aranda FJ
    Biochim Biophys Acta; 2008 Dec; 1778(12):2806-13. PubMed ID: 18706388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes.
    Aranda FJ; Teruel JA; Espuny MJ; Marqués A; Manresa A; Palacios-Lidón E; Ortiz A
    Biochim Biophys Acta; 2007 Oct; 1768(10):2596-604. PubMed ID: 17662234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.
    Zaragoza A; Aranda FJ; Espuny MJ; Teruel JA; Marqués A; Manresa A; Ortiz A
    Langmuir; 2009 Jul; 25(14):7892-8. PubMed ID: 19391573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence for a colloid-osmotic mechanism.
    Zaragoza A; Aranda FJ; Espuny MJ; Teruel JA; Marqués A; Manresa A; Ortiz A
    Langmuir; 2010 Jun; 26(11):8567-72. PubMed ID: 20146489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2.
    Zaragoza A; Teruel JA; Aranda FJ; Ortiz A
    J Colloid Interface Sci; 2013 Oct; 408():132-7. PubMed ID: 23948458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a Semisynthetic Catechin on Phosphatidylglycerol Membranes: A Mixed Experimental and Simulation Study.
    Aranda E; Teruel JA; Ortiz A; Pérez-Cárceles MD; Rodríguez-López JN; Aranda FJ
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol.
    Lewis RN; Zhang YP; McElhaney RN
    Biochim Biophys Acta; 2005 Mar; 1668(2):203-14. PubMed ID: 15737331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a synthetic antitumoral catechin and its tyrosinase-processed product on the structural properties of phosphatidylcholine membranes.
    How CW; Teruel JA; Ortiz A; Montenegro MF; Rodríguez-López JN; Aranda FJ
    Biochim Biophys Acta; 2014 May; 1838(5):1215-24. PubMed ID: 24518157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of a Rhodococcus sp. trehalose lipid biosurfactant with model proteins: thermodynamic and structural changes.
    Zaragoza A; Teruel JA; Aranda FJ; Marqués A; Espuny MJ; Manresa Á; Ortiz A
    Langmuir; 2012 Jan; 28(2):1381-90. PubMed ID: 22172005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of trehalose on the phase behavior of DPPC-cholesterol unilamellar vesicles.
    Ohtake S; Schebor C; de Pablo JJ
    Biochim Biophys Acta; 2006 Jan; 1758(1):65-73. PubMed ID: 16473323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the interactions of surfactin with phospholipid vesicles.
    Grau A; Gómez Fernández JC; Peypoux F; Ortiz A
    Biochim Biophys Acta; 1999 May; 1418(2):307-19. PubMed ID: 10320682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation induced by melittin in negatively-charged phospholipid bilayers as detected by fluorescence polarization and differential scanning calorimetry.
    Bernard E; Faucon JF; Dufourcq J
    Biochim Biophys Acta; 1982 May; 688(1):152-62. PubMed ID: 7093270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylglycerol and tetramyristoylcardiolipin.
    Benesch MG; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2878-88. PubMed ID: 26275589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane thickening by the antimicrobial peptide PGLa.
    Pabst G; Grage SL; Danner-Pongratz S; Jing W; Ulrich AS; Watts A; Lohner K; Hickel A
    Biophys J; 2008 Dec; 95(12):5779-88. PubMed ID: 18835902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.