These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21600646)

  • 1. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue.
    Orlova Y; Magome N; Liu L; Chen Y; Agladze K
    Biomaterials; 2011 Aug; 32(24):5615-24. PubMed ID: 21600646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro and nano-scale in vitro 3D culture system for cardiac stem cells.
    Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N
    J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering.
    Prabhakaran MP; Kai D; Ghasemi-Mobarakeh L; Ramakrishna S
    Biomed Mater; 2011 Oct; 6(5):055001. PubMed ID: 21813957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro].
    Liu XM; Liu H; Xiong FY; Chen ZL
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile cardiac grafts using a novel nanofibrous mesh.
    Shin M; Ishii O; Sueda T; Vacanti JP
    Biomaterials; 2004 Aug; 25(17):3717-23. PubMed ID: 15020147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering.
    Ahmadi P; Nazeri N; Derakhshan MA; Ghanbari H
    Int J Biol Macromol; 2021 Jun; 180():590-598. PubMed ID: 33711373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction.
    Venugopal J; Rajeswari R; Shayanti M; Sridhar R; Sundarrajan S; Balamurugan R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1325-31. PubMed ID: 23827578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications.
    Chen R; Qiu L; Ke Q; He C; Mo X
    J Biomater Sci Polym Ed; 2009; 20(11):1513-36. PubMed ID: 19619394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds.
    Liao H; Qi R; Shen M; Cao X; Guo R; Zhang Y; Shi X
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):528-35. PubMed ID: 21353768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
    Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI
    Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of electrospun silica-titania nanofibers with different silica content and evaluation of the morphology and osteoinductive properties.
    Wang X; Zhu J; Yin L; Liu S; Zhang X; Ao Y; Chen H
    J Biomed Mater Res A; 2012 Dec; 100(12):3511-7. PubMed ID: 22767362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration.
    Wang W; Itoh S; Konno K; Kikkawa T; Ichinose S; Sakai K; Ohkuma T; Watabe K
    J Biomed Mater Res A; 2009 Dec; 91(4):994-1005. PubMed ID: 19097155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications.
    Tallawi M; Dippold D; Rai R; D'Atri D; Roether JA; Schubert DW; Rosellini E; Engel FB; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():569-76. PubMed ID: 27612749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.