These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21600779)

  • 1. Site-directed mutagenesis of histidine 69 and glutamic acid 148 alters the ribonuclease activity of pea ABR17 (PR10.4).
    Krishnaswamy S; Baral PK; James MN; Kav NN
    Plant Physiol Biochem; 2011 Sep; 49(9):958-62. PubMed ID: 21600779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana.
    Krishnaswamy SS; Srivastava S; Mohammadi M; Rahman MH; Deyholos MK; Kav NN
    BMC Plant Biol; 2008 Sep; 8():91. PubMed ID: 18783601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of specific target recognition and RNA hydrolysis by ribonucleolytic toxin restrictocin.
    Nayak SK; Bagga S; Gaur D; Nair DT; Salunke DM; Batra JK
    Biochemistry; 2001 Aug; 40(31):9115-24. PubMed ID: 11478878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of active site residues to the activity and thermal stability of ribonuclease Sa.
    Yakovlev GI; Mitkevich VA; Shaw KL; Trevino S; Newsom S; Pace CN; Makarov AA
    Protein Sci; 2003 Oct; 12(10):2367-73. PubMed ID: 14500895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residues involved in the catalysis, base specificity, and cytotoxicity of ribonuclease from Rana catesbeiana based upon mutagenesis and X-ray crystallography.
    Leu YJ; Chern SS; Wang SC; Hsiao YY; Amiraslanov I; Liaw YC; Liao YD
    J Biol Chem; 2003 Feb; 278(9):7300-9. PubMed ID: 12499382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single amino acid substitutions affecting the specificity of the fungal ribotoxin mitogillin.
    Kao R; Davies J
    FEBS Lett; 2000 Jan; 466(1):87-90. PubMed ID: 10648818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive expression of the pea ABA-responsive 17 (ABR17) cDNA confers multiple stress tolerance in Arabidopsis thaliana.
    Srivastava S; Rahman MH; Shah S; Kav NN
    Plant Biotechnol J; 2006 Sep; 4(5):529-49. PubMed ID: 17309728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis and modelling of linoleate-binding to pea seed lipoxygenase.
    Hughes RK; Lawson DM; Hornostaj AR; Fairhurst SA; Casey R
    Eur J Biochem; 2001 Feb; 268(4):1030-40. PubMed ID: 11179969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis.
    Haruki M; Noguchi E; Nakai C; Liu YY; Oobatake M; Itaya M; Kanaya S
    Eur J Biochem; 1994 Mar; 220(2):623-31. PubMed ID: 8125123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An engineered ribonuclease preferring phosphorothioate RNA.
    Loverix S; Winquist A; Strömberg R; Steyaert J
    Nat Struct Biol; 1998 May; 5(5):365-8. PubMed ID: 9586998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, lipoylation and structure determination of recombinant pea H-protein in Escherichia coli.
    Macherel D; Bourguignon J; Forest E; Faure M; Cohen-Addad C; Douce R
    Eur J Biochem; 1996 Feb; 236(1):27-33. PubMed ID: 8617275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porphobilinogen synthase from pea: expression from an artificial gene, kinetic characterization, and novel implications for subunit interactions.
    Kervinen J; Dunbrack RL; Litwin S; Martins J; Scarrow RC; Volin M; Yeung AT; Yoon E; Jaffe EK
    Biochemistry; 2000 Aug; 39(30):9018-29. PubMed ID: 10913315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase).
    Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y
    Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonuclease A mutant His119 Asn: the role of histidine in catalysis.
    Panov KI; Kolbanovskaya EY; Okorokov AL; Panova TB; Terwisscha van Scheltinga AC; Karpeisky MYa ; Beintema JJ
    FEBS Lett; 1996 Nov; 398(1):57-60. PubMed ID: 8946953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity.
    Numata T; Suzuki A; Yao M; Tanaka I; Kimura M
    Biochemistry; 2001 Jan; 40(2):524-30. PubMed ID: 11148047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foldability, enzymatic activity, and interacting ability of barnase mutants obtained by permutation of secondary structure units.
    Tsuji T; Yanagawa H
    Biochemistry; 2004 Jun; 43(22):6968-75. PubMed ID: 15170334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing functional perfection in substructures of ribonuclease T1: double combinatorial random mutagenesis involving Asn43, Asn44, and Glu46 in the guanine binding loop.
    Kumar K; Walz FG
    Biochemistry; 2001 Mar; 40(12):3748-57. PubMed ID: 11297444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for catalysis by onconase.
    Lee JE; Bae E; Bingman CA; Phillips GN; Raines RT
    J Mol Biol; 2008 Jan; 375(1):165-77. PubMed ID: 18001769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.
    Arai N; Nishimura E; Kikuchi Y; Ohyama T
    Biochem Biophys Res Commun; 2015 Sep; 465(1):108-12. PubMed ID: 26235877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.