These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21600829)

  • 1. Global sensitivity analysis of a wave propagation model for arm arteries.
    Leguy CA; Bosboom EM; Belloum AS; Hoeks AP; van de Vosse FN
    Med Eng Phys; 2011 Oct; 33(8):1008-16. PubMed ID: 21600829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part A: Identification of most influential model parameters.
    Huberts W; de Jonge C; van der Linden WP; Inda MA; Tordoir JH; van de Vosse FN; Bosboom EM
    Med Eng Phys; 2013 Jun; 35(6):810-26. PubMed ID: 22964062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery.
    Huberts W; Van Canneyt K; Segers P; Eloot S; Tordoir JH; Verdonck P; van de Vosse FN; Bosboom EM
    J Biomech; 2012 Jun; 45(9):1684-91. PubMed ID: 22516855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements.
    Matthys KS; Alastruey J; Peiró J; Khir AW; Segers P; Verdonck PR; Parker KH; Sherwin SJ
    J Biomech; 2007; 40(15):3476-86. PubMed ID: 17640653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part B: Identification of possible generic model parameters.
    Huberts W; de Jonge C; van der Linden WP; Inda MA; Passera K; Tordoir JH; van de Vosse FN; Bosboom EM
    Med Eng Phys; 2013 Jun; 35(6):827-37. PubMed ID: 22964064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the upper limb arterial properties during reactive hyperemia.
    Dobson G; Chong M; Walker M; Petrasek P; Johnston CR; Tyberg JV; Karamanoglu M
    Cardiovasc Eng; 2007 Sep; 7(3):127-34. PubMed ID: 17676391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of 1D blood flow models of the human arterial network to differential pressure predictions.
    Johnson DA; Rose WC; Edwards JW; Naik UP; Beris AN
    J Biomech; 2011 Mar; 44(5):869-76. PubMed ID: 21236432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations.
    Sankaran S; Marsden AL
    J Biomech Eng; 2011 Mar; 133(3):031001. PubMed ID: 21303177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure.
    Ellwein LM; Tran HT; Zapata C; Novak V; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):94-108. PubMed ID: 18080757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of distributional shape of substance parameters on exposure model output.
    Lessmann K; Beyer A; Klasmeier J; Matthies M
    Risk Anal; 2005 Oct; 25(5):1137-45. PubMed ID: 16297220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zen and the art of nomenclature maintenance: a revised approach to respiratory symbols and terminology.
    Primiano FP; Chatburn RL
    Respir Care; 2006 Dec; 51(12):1458-70. PubMed ID: 17134527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive quantification of peripheral arterial volume distensibility and its non-linear relationship with arterial pressure.
    Zheng D; Murray A
    J Biomech; 2009 May; 42(8):1032-7. PubMed ID: 19345360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the surrounding tissue in the propagation of waves through the arterial system.
    Dinnar U
    TIT J Life Sci; 1975; 5(3-4):49-56. PubMed ID: 1231056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multimedia environmental model of chemical distribution: fate, transport, and uncertainty analysis.
    Luo Y; Yang X
    Chemosphere; 2007 Jan; 66(8):1396-407. PubMed ID: 17095045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study.
    Wenk JF
    J Biomech Eng; 2011 Jan; 133(1):014503. PubMed ID: 21186905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of pulse transit time as an index of arterial stiffness during exercise.
    Kounalakis SN; Geladas ND
    Cardiovasc Eng; 2009 Sep; 9(3):92-7. PubMed ID: 19657732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of viscoelastic wall properties in ovine arteries.
    Valdez-Jasso D; Haider MA; Banks HT; Bia Santana D; Zócalo Germán Y; Armentano RL; Olufsen MS
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):210-9. PubMed ID: 19272946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global sensitivity analysis in wastewater treatment plant model applications: prioritizing sources of uncertainty.
    Sin G; Gernaey KV; Neumann MB; van Loosdrecht MC; Gujer W
    Water Res; 2011 Jan; 45(2):639-51. PubMed ID: 20828785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.