These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 21600921)
1. A new similarity measure for spike trains: sensitivity to bursts and periods of inhibition. Lyttle D; Fellous JM J Neurosci Methods; 2011 Aug; 199(2):296-309. PubMed ID: 21600921 [TBL] [Abstract][Full Text] [Related]
2. Testing a neural coding hypothesis using surrogate data. Hirata Y; Katori Y; Shimokawa H; Suzuki H; Blenkinsop TA; Lang EJ; Aihara K J Neurosci Methods; 2008 Jul; 172(2):312-22. PubMed ID: 18565591 [TBL] [Abstract][Full Text] [Related]
3. First-spike latency in the presence of spontaneous activity. Pawlas Z; Klebanov LB; Benes V; Prokesová M; Popelár J; Lánský P Neural Comput; 2010 Jul; 22(7):1675-97. PubMed ID: 20235823 [TBL] [Abstract][Full Text] [Related]
4. A nonparametric approach for detection of bursts in spike trains. Gourévitch B; Eggermont JJ J Neurosci Methods; 2007 Mar; 160(2):349-58. PubMed ID: 17070926 [TBL] [Abstract][Full Text] [Related]
10. Power demodulation of local field potential recordings. Pearson S; McNames J Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1185-8. PubMed ID: 17946880 [TBL] [Abstract][Full Text] [Related]
11. Measuring burstiness and regularity in oscillatory spike trains. Bingmer M; Schiemann J; Roeper J; Schneider G J Neurosci Methods; 2011 Oct; 201(2):426-37. PubMed ID: 21871494 [TBL] [Abstract][Full Text] [Related]
12. Effect of stimulation on burst firing in cat primary auditory cortex. Bowman DM; Eggermont JJ; Smith GM J Neurophysiol; 1995 Nov; 74(5):1841-55. PubMed ID: 8592178 [TBL] [Abstract][Full Text] [Related]
13. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210 [TBL] [Abstract][Full Text] [Related]
14. An information-geometric framework for statistical inferences in the neural spike train space. Wu W; Srivastava A J Comput Neurosci; 2011 Nov; 31(3):725-48. PubMed ID: 21584775 [TBL] [Abstract][Full Text] [Related]
15. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Barbieri R; Quirk MC; Frank LM; Wilson MA; Brown EN J Neurosci Methods; 2001 Jan; 105(1):25-37. PubMed ID: 11166363 [TBL] [Abstract][Full Text] [Related]
16. A cross-interval spike train analysis: the correlation between spike generation and temporal integration of doublets. Tam DC Biol Cybern; 1998 Feb; 78(2):95-106. PubMed ID: 9525036 [TBL] [Abstract][Full Text] [Related]
17. A reproducing kernel Hilbert space framework for spike train signal processing. Paiva AR; Park I; Príncipe JC Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265 [TBL] [Abstract][Full Text] [Related]
18. Measuring spike pattern reliability with the Lempel-Ziv-distance. Christen M; Kohn A; Ott T; Stoop R J Neurosci Methods; 2006 Sep; 156(1-2):342-50. PubMed ID: 16584787 [TBL] [Abstract][Full Text] [Related]
19. Determining Burst Firing Time Distributions from Multiple Spike Trains. Lago-Fernández LF; Szücs A; Varona P Neural Comput; 2009 Apr; 21(4):973-90. PubMed ID: 19199390 [TBL] [Abstract][Full Text] [Related]
20. A method for decoding the neurophysiological spike-response transform. Stern E; García-Crescioni K; Miller MW; Peskin CS; Brezina V J Neurosci Methods; 2009 Nov; 184(2):337-56. PubMed ID: 19695289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]