These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21601024)

  • 1. Coordinated tether formation in anatomically distinct mice growth centers is dependent on a functional vitamin D receptor and is tightly linked to three-dimensional tissue morphology.
    Lee CS; Chen J; Wang Y; Williams JK; Ranly DM; Schwartz Z; Boyan BD
    Bone; 2011 Sep; 49(3):419-27. PubMed ID: 21601024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of tethers linking the epiphysis and metaphysis is regulated by vitamin d receptor-mediated signaling.
    Chen J; Lee CS; Coleman RM; Yoon JY; Lohmann CH; Zustin J; Guldberg RE; Schwartz Z; Boyan BD
    Calcif Tissue Int; 2009 Aug; 85(2):134-45. PubMed ID: 19506934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the vitamin D receptor on bone geometry and strength during gestation and lactation in mice.
    Korecki CL; Zinser G; Liu X; Siedler J; Welsh J; Niebur GL
    Calcif Tissue Int; 2009 Nov; 85(5):405-11. PubMed ID: 19763375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption.
    Masuyama R; Nakaya Y; Katsumata S; Kajita Y; Uehara M; Tanaka S; Sakai A; Kato S; Nakamura T; Suzuki K
    J Bone Miner Res; 2003 Jul; 18(7):1217-26. PubMed ID: 12854831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses.
    Amling M; Priemel M; Holzmann T; Chapin K; Rueger JM; Baron R; Demay MB
    Endocrinology; 1999 Nov; 140(11):4982-7. PubMed ID: 10537122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice.
    Kovacs CS; Woodland ML; Fudge NJ; Friel JK
    Am J Physiol Endocrinol Metab; 2005 Jul; 289(1):E133-44. PubMed ID: 15741244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-related differences in the skeletal phenotype of aged vitamin D receptor global knockout mice.
    Ryan JW; Starczak Y; Tsangari H; Sawyer RK; Davey RA; Atkins GJ; Morris HA; Anderson PH
    J Steroid Biochem Mol Biol; 2016 Nov; 164():361-368. PubMed ID: 26690785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentration without affecting structural properties of bone mineral crystals.
    Misof BM; Roschger P; Tesch W; Baldock PA; Valenta A; Messmer P; Eisman JA; Boskey AL; Gardiner EM; Fratzl P; Klaushofer K
    Calcif Tissue Int; 2003 Sep; 73(3):251-7. PubMed ID: 14667138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts.
    Masuyama R; Stockmans I; Torrekens S; Van Looveren R; Maes C; Carmeliet P; Bouillon R; Carmeliet G
    J Clin Invest; 2006 Dec; 116(12):3150-9. PubMed ID: 17099775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant growth plate development in VDR/RXR gamma double null mutant mice.
    Yagishita N; Yamamoto Y; Yoshizawa T; Sekine K; Uematsu Y; Murayama H; Nagai Y; Krezel W; Chambon P; Matsumoto T; Kato S
    Endocrinology; 2001 Dec; 142(12):5332-41. PubMed ID: 11713233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier.
    Kong J; Zhang Z; Musch MW; Ning G; Sun J; Hart J; Bissonnette M; Li YC
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G208-16. PubMed ID: 17962355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered gene expression profile in the kidney of vitamin D receptor knockout mice.
    Li X; Zheng W; Li YC
    J Cell Biochem; 2003 Jul; 89(4):709-19. PubMed ID: 12858337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1 alpha,25-Dihydroxyvitamin D(3) is a preventive factor in the metastasis of lung cancer.
    Nakagawa K; Kawaura A; Kato S; Takeda E; Okano T
    Carcinogenesis; 2005 Feb; 26(2):429-40. PubMed ID: 15539405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice.
    Hesse M; Fröhlich LF; Zeitz U; Lanske B; Erben RG
    Matrix Biol; 2007 Mar; 26(2):75-84. PubMed ID: 17123805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning.
    Yoshizawa T; Handa Y; Uematsu Y; Takeda S; Sekine K; Yoshihara Y; Kawakami T; Arioka K; Sato H; Uchiyama Y; Masushige S; Fukamizu A; Matsumoto T; Kato S
    Nat Genet; 1997 Aug; 16(4):391-6. PubMed ID: 9241280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice.
    Mathieu C; Van Etten E; Gysemans C; Decallonne B; Kato S; Laureys J; Depovere J; Valckx D; Verstuyf A; Bouillon R
    J Bone Miner Res; 2001 Nov; 16(11):2057-65. PubMed ID: 11697802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism.
    Shimada T; Yamazaki Y; Takahashi M; Hasegawa H; Urakawa I; Oshima T; Ono K; Kakitani M; Tomizuka K; Fujita T; Fukumoto S; Yamashita T
    Am J Physiol Renal Physiol; 2005 Nov; 289(5):F1088-95. PubMed ID: 15998839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization.
    Healy KD; Frahm MA; DeLuca HF
    Arch Biochem Biophys; 2005 Jan; 433(2):466-73. PubMed ID: 15581603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition.
    Tanaka H; Seino Y
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):343-5. PubMed ID: 15225798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.