BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21601529)

  • 1. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.
    Mohanty D; Sankaranarayanan R; Gokhale RS
    Tuberculosis (Edinb); 2011 Sep; 91(5):448-55. PubMed ID: 21601529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis.
    Goyal A; Verma P; Anandhakrishnan M; Gokhale RS; Sankaranarayanan R
    J Mol Biol; 2012 Feb; 416(2):221-38. PubMed ID: 22206988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids.
    Gokhale RS; Saxena P; Chopra T; Mohanty D
    Nat Prod Rep; 2007 Apr; 24(2):267-77. PubMed ID: 17389997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria.
    Trivedi OA; Arora P; Sridharan V; Tickoo R; Mohanty D; Gokhale RS
    Nature; 2004 Mar; 428(6981):441-5. PubMed ID: 15042094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatility of polyketide synthases in generating metabolic diversity.
    Gokhale RS; Sankaranarayanan R; Mohanty D
    Curr Opin Struct Biol; 2007 Dec; 17(6):736-43. PubMed ID: 17935970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyketide versatility in the biosynthesis of complex mycobacterial cell wall lipids.
    Chopra T; Gokhale RS
    Methods Enzymol; 2009; 459():259-94. PubMed ID: 19362644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation.
    Patil GS; Kinatukara P; Mondal S; Shambhavi S; Patel KD; Pramanik S; Dubey N; Narasimhan S; Madduri MK; Pal B; Gokhale RS; Sankaranarayanan R
    Elife; 2021 Sep; 10():. PubMed ID: 34490847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promiscuous fatty acyl CoA ligases produce acyl-CoA and acyl-SNAC precursors for polyketide biosynthesis.
    Arora P; Vats A; Saxena P; Mohanty D; Gokhale RS
    J Am Chem Soc; 2005 Jul; 127(26):9388-9. PubMed ID: 15984864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis.
    Arora P; Goyal A; Natarajan VT; Rajakumara E; Verma P; Gupta R; Yousuf M; Trivedi OA; Mohanty D; Tyagi A; Sankaranarayanan R; Gokhale RS
    Nat Chem Biol; 2009 Mar; 5(3):166-73. PubMed ID: 19182784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase.
    Hayashi T; Kitamura Y; Funa N; Ohnishi Y; Horinouchi S
    Chembiochem; 2011 Sep; 12(14):2166-76. PubMed ID: 21815236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic understanding of bacterial FAALs and the role of their homologs in eukaryotes.
    Mondal S; Pal B; Sankaranarayanan R
    Proteins; 2023 Aug; ():. PubMed ID: 37615273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis.
    Baran M; Grimes KD; Sibbald PA; Fu P; Boshoff HIM; Wilson DJ; Aldrich CC
    Eur J Med Chem; 2020 Sep; 201():112408. PubMed ID: 32574901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis.
    Siméone R; Léger M; Constant P; Malaga W; Marrakchi H; Daffé M; Guilhot C; Chalut C
    FEBS J; 2010 Jun; 277(12):2715-25. PubMed ID: 20553505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities.
    Jackson M; Stadthagen G; Gicquel B
    Tuberculosis (Edinb); 2007 Mar; 87(2):78-86. PubMed ID: 17030019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis.
    Léger M; Gavalda S; Guillet V; van der Rest B; Slama N; Montrozier H; Mourey L; Quémard A; Daffé M; Marrakchi H
    Chem Biol; 2009 May; 16(5):510-9. PubMed ID: 19477415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits.
    Bazet Lyonnet B; Diacovich L; Gago G; Spina L; Bardou F; Lemassu A; Quémard A; Gramajo H
    FEBS J; 2017 Apr; 284(7):1110-1125. PubMed ID: 28222482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing a toolkit for precursor-directed polyketide biosynthesis: exploring substrate promiscuities of acid-CoA ligases.
    Go MK; Chow JY; Cheung VW; Lim YP; Yew WS
    Biochemistry; 2012 Jun; 51(22):4568-79. PubMed ID: 22587726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular templating in kirromycin biosynthesis: the acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific ACP of the trans-AT PKS.
    Musiol EM; Härtner T; Kulik A; Moldenhauer J; Piel J; Wohlleben W; Weber T
    Chem Biol; 2011 Apr; 18(4):438-44. PubMed ID: 21513880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond.
    Quadri LE
    Crit Rev Biochem Mol Biol; 2014; 49(3):179-211. PubMed ID: 24625105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel intermolecular iterative mechanism for biosynthesis of mycoketide catalyzed by a bimodular polyketide synthase.
    Chopra T; Banerjee S; Gupta S; Yadav G; Anand S; Surolia A; Roy RP; Mohanty D; Gokhale RS
    PLoS Biol; 2008 Jul; 6(7):e163. PubMed ID: 18613748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.