These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
785 related articles for article (PubMed ID: 21601820)
1. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Laurent S; Dutz S; Häfeli UO; Mahmoudi M Adv Colloid Interface Sci; 2011 Aug; 166(1-2):8-23. PubMed ID: 21601820 [TBL] [Abstract][Full Text] [Related]
2. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Shi D; Sadat ME; Dunn AW; Mast DB Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408 [TBL] [Abstract][Full Text] [Related]
3. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. El-Sherbiny IM; Elbaz NM; Sedki M; Elgammal A; Yacoub MH Nanomedicine (Lond); 2017 Feb; 12(4):387-402. PubMed ID: 28078950 [TBL] [Abstract][Full Text] [Related]
4. Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy. Dias CSB; Hanchuk TDM; Wender H; Shigeyosi WT; Kobarg J; Rossi AL; Tanaka MN; Cardoso MB; Garcia F Sci Rep; 2017 Nov; 7(1):14843. PubMed ID: 29093500 [TBL] [Abstract][Full Text] [Related]
5. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Blanco-Andujar C; Walter A; Cotin G; Bordeianu C; Mertz D; Felder-Flesch D; Begin-Colin S Nanomedicine (Lond); 2016 Jul; 11(14):1889-910. PubMed ID: 27389703 [TBL] [Abstract][Full Text] [Related]
6. Complex of TNF-α and Modified Fe Teo P; Wang X; Chen B; Zhang H; Yang X; Huang Y; Tang J Cancer Biother Radiopharm; 2017 Dec; 32(10):379-386. PubMed ID: 29265918 [TBL] [Abstract][Full Text] [Related]
7. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Mahmoudi M; Sant S; Wang B; Laurent S; Sen T Adv Drug Deliv Rev; 2011; 63(1-2):24-46. PubMed ID: 20685224 [TBL] [Abstract][Full Text] [Related]
8. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
9. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Pucci C; Degl'Innocenti A; Belenli Gümüş M; Ciofani G Biomater Sci; 2022 May; 10(9):2103-2121. PubMed ID: 35316317 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Santhosh PB; Ulrih NP Cancer Lett; 2013 Aug; 336(1):8-17. PubMed ID: 23664890 [TBL] [Abstract][Full Text] [Related]
11. Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. Mohammad F; Yusof NA J Colloid Interface Sci; 2014 Nov; 434():89-97. PubMed ID: 25170601 [TBL] [Abstract][Full Text] [Related]
12. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Tao C; Zhu Y Dalton Trans; 2014 Nov; 43(41):15482-90. PubMed ID: 25190592 [TBL] [Abstract][Full Text] [Related]
13. Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review. Molaei MJ J Biomater Appl; 2024 Jul; 39(1):3-23. PubMed ID: 38606627 [TBL] [Abstract][Full Text] [Related]
14. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Hervault A; Thanh NT Nanoscale; 2014 Oct; 6(20):11553-73. PubMed ID: 25212238 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Kandasamy G; Maity D Int J Pharm; 2015 Dec; 496(2):191-218. PubMed ID: 26520409 [TBL] [Abstract][Full Text] [Related]
16. Polymeric Reactor for the Synthesis of Superparamagnetic-Thermal Treatment of Breast Cancer. Alhasan AH; Fardous RS; Alsudir SA; Majrashi MA; Alghamdi WM; Alsharaeh EH; Almalik AM Mol Pharm; 2019 Aug; 16(8):3577-3587. PubMed ID: 31291120 [TBL] [Abstract][Full Text] [Related]
17. Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery. Kakwere H; Leal MP; Materia ME; Curcio A; Guardia P; Niculaes D; Marotta R; Falqui A; Pellegrino T ACS Appl Mater Interfaces; 2015 May; 7(19):10132-45. PubMed ID: 25840122 [TBL] [Abstract][Full Text] [Related]
18. Therapeutic potential of low-cost nanocarriers produced by green synthesis: macrophage uptake of superparamagnetic iron oxide nanoparticles. Verçoza BR; Bernardo RR; Pentón-Madrigal A; Sinnecker JP; Rodrigues JC; S de Oliveira LA Nanomedicine (Lond); 2019 Sep; 14(17):2293-2313. PubMed ID: 31414612 [No Abstract] [Full Text] [Related]
19. Cancer hyperthermia using magnetic nanoparticles. Kobayashi T Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094 [TBL] [Abstract][Full Text] [Related]
20. Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy. Farzin A; Hassan S; Emadi R; Etesami SA; Ai J Mater Sci Eng C Mater Biol Appl; 2019 May; 98():930-938. PubMed ID: 30813100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]