These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21601910)

  • 21. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils.
    Anawar HM; Garcia-Sanchez A; Santa Regina I
    Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.
    Weber FA; Hofacker AF; Voegelin A; Kretzschmar R
    Environ Sci Technol; 2010 Jan; 44(1):116-22. PubMed ID: 20039741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting EDTA extraction of lead from lead-contaminated soils.
    Kim C; Lee Y; Ong SK
    Chemosphere; 2003 Jun; 51(9):845-53. PubMed ID: 12697174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil.
    Abbas MH; Abdelhafez AA
    Chemosphere; 2013 Jan; 90(2):588-94. PubMed ID: 22990024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents.
    Yuan C; Chiang TS
    J Hazard Mater; 2008 Mar; 152(1):309-15. PubMed ID: 17697749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid.
    Jean-Soro L; Bordas F; Bollinger JC
    Environ Pollut; 2012 May; 164():175-81. PubMed ID: 22361057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.
    Komárek M; Vaněk A; Ettler V
    Environ Pollut; 2013 Jan; 172():9-22. PubMed ID: 22982549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.
    Labanowski J; Monna F; Bermond A; Cambier P; Fernandez C; Lamy I; van Oort F
    Environ Pollut; 2008 Apr; 152(3):693-701. PubMed ID: 17692441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system.
    Zhou L; Zheng W; Ji Y; Zhang J; Zeng C; Zhang Y; Wang Q; Yang X
    J Hazard Mater; 2013 Dec; 263 Pt 2():422-30. PubMed ID: 24220194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.
    Pociecha M; Lestan D
    J Hazard Mater; 2009 Jun; 165(1-3):533-9. PubMed ID: 19022571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils.
    Giral M; Zagury GJ; Deschênes L; Blouin JP
    Environ Pollut; 2010 May; 158(5):1890-8. PubMed ID: 19945202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil.
    Liu CP; Luo CL; Xu XH; Wu CA; Li FB; Zhang G
    Chemosphere; 2012 Mar; 86(11):1106-11. PubMed ID: 22226367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil.
    Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M
    J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil.
    de la Fuente C; Clemente R; Bernal MP
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):207-15. PubMed ID: 17659778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The study of operating variables in soil washing with EDTA.
    Zou Z; Qiu R; Zhang W; Dong H; Zhao Z; Zhang T; Wei X; Cai X
    Environ Pollut; 2009 Jan; 157(1):229-36. PubMed ID: 18774633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromium and nickel mobilization from a contaminated soil using chelants.
    Jean L; Bordas F; Bollinger JC
    Environ Pollut; 2007 Jun; 147(3):729-36. PubMed ID: 17084006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.