BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21602251)

  • 1. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model.
    Cortez PP; Silva MA; Santos M; Armada-da-Silva P; Afonso A; Lopes MA; Santos JD; Maurício AC
    J Biomater Appl; 2012 Aug; 27(2):201-17. PubMed ID: 21602251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and preliminary in vivo evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques.
    Cortez PP; Atayde LM; Silva MA; Armada-da-Silva P; Fernandes MH; Afonso A; Lopes MA; Maurício AC; Santos JD
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):170-9. PubMed ID: 21714082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology effect of bioglass-reinforced hydroxyapatite (Bonelike(®) ) on osteoregeneration.
    Atayde LM; Cortez PP; Afonso A; Santos M; Maurício AC; Santos JD
    J Biomed Mater Res B Appl Biomater; 2015 Feb; 103(2):292-304. PubMed ID: 24819340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO
    Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new HA/TTCP material for bone augmentation: an in vivo histological pilot study in primates sinus grafting.
    Piccinini M; Rebaudi A; Sglavo VM; Bucciotti F; Pierfrancesco R
    Implant Dent; 2013 Feb; 22(1):83-90. PubMed ID: 23296033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study.
    Um YJ; Jung UW; Chae GJ; Kim CS; Lee YK; Cho KS; Kim CK; Choi SH
    Biomed Mater; 2008 Dec; 3(4):044113. PubMed ID: 19029611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evaluation of resorbable bone graft substitutes in beagles: histological properties.
    Shih TC; Teng NC; Wang PD; Lin CT; Yang JC; Fong SW; Lin HK; Chang WJ
    J Biomed Mater Res A; 2013 Aug; 101(8):2405-11. PubMed ID: 23526767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.
    Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J
    J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone formation in a carbonate-substituted hydroxyapatite implant is inhibited by zoledronate: the importance of bioresorption to osteoconduction.
    Spence G; Phillips S; Campion C; Brooks R; Rushton N
    J Bone Joint Surg Br; 2008 Dec; 90(12):1635-40. PubMed ID: 19043138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of osteoclast-like cells on HA and TCP ceramics.
    Detsch R; Mayr H; Ziegler G
    Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair.
    Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y
    J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid composites of calcium phosphate granules, fibrin glue, and bone marrow for skeletal repair.
    Le Nihouannen D; Goyenvalle E; Aguado E; Pilet P; Bilban M; Daculsi G; Layrolle P
    J Biomed Mater Res A; 2007 May; 81(2):399-408. PubMed ID: 17117470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A composite material model for improved bone formation.
    Scaglione S; Lazzarini E; Ilengo C; Quarto R
    J Tissue Eng Regen Med; 2010 Oct; 4(7):505-13. PubMed ID: 20213628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histological and scanning electron microscopy analyses of bone/implant interface using the novel Bonelike synthetic bone graft.
    Gutierres M; Hussain NS; Lopes MA; Afonso A; Cabral AT; Almeida L; Santos JD
    J Orthop Res; 2006 May; 24(5):953-8. PubMed ID: 16609968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly(L-lactic acid) scaffold.
    Dinarvand P; Seyedjafari E; Shafiee A; Jandaghi AB; Doostmohammadi A; Fathi MH; Farhadian S; Soleimani M
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4518-24. PubMed ID: 21999213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative magnetic scaffolds for orthopedic tissue engineering.
    Panseri S; Russo A; Giavaresi G; Sartori M; Veronesi F; Fini M; Salter DM; Ortolani A; Strazzari A; Visani A; Dionigi C; Bock N; Sandri M; Tampieri A; Marcacci M
    J Biomed Mater Res A; 2012 Sep; 100(9):2278-86. PubMed ID: 22499413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction.
    Coathup MJ; Hing KA; Samizadeh S; Chan O; Fang YS; Campion C; Buckland T; Blunn GW
    J Biomed Mater Res A; 2012 Jun; 100(6):1550-5. PubMed ID: 22419568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.