These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 2160233)
1. Co-localization of the dihydropyridine receptor and the cyclic AMP-binding subunit of an intrinsic protein kinase to the junctional membrane of the transverse tubules of skeletal muscle. Salvatori S; Damiani E; Barhanin J; Furlan S; Salviati G; Margreth A Biochem J; 1990 May; 267(3):679-87. PubMed ID: 2160233 [TBL] [Abstract][Full Text] [Related]
2. Subcellular fractionation to junctional sarcoplasmic reticulum and biochemical characterization of 170 kDa Ca(2+)- and low-density-lipoprotein-binding protein in rabbit skeletal muscle. Damiani E; Margreth A Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):825-32. PubMed ID: 1872815 [TBL] [Abstract][Full Text] [Related]
3. Localization of the alpha 1 and alpha 2 subunits of the dihydropyridine receptor and ankyrin in skeletal muscle triads. Flucher BE; Morton ME; Froehner SC; Daniels MP Neuron; 1990 Sep; 5(3):339-51. PubMed ID: 2169270 [TBL] [Abstract][Full Text] [Related]
4. Purification and affinity labeling of dihydropyridine receptor from rabbit skeletal muscle membranes. Kanngiesser U; Nalik P; Pongs O Proc Natl Acad Sci U S A; 1988 May; 85(9):2969-73. PubMed ID: 2834724 [TBL] [Abstract][Full Text] [Related]
5. A 60 kDa polypeptide of skeletal-muscle sarcoplasmic reticulum is a calmodulin-dependent protein kinase that associates with and phosphorylates several membrane proteins. Leddy JJ; Murphy BJ; Qu-Yi ; Doucet JP; Pratt C; Tuana BS Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):849-56. PubMed ID: 8240301 [TBL] [Abstract][Full Text] [Related]
7. Biochemical characteristics of free and junctional sarcoplasmic reticulum and of transverse tubules in human skeletal muscle. Damiani E; Barillari A; Tobaldin G; Pierobon S; Margreth A Muscle Nerve; 1989 Apr; 12(4):323-31. PubMed ID: 2549416 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel by an intrinsic protein kinase in isolated triads from rabbit skeletal muscle. Imagawa T; Leung AT; Campbell KP J Biol Chem; 1987 Jun; 262(17):8333-9. PubMed ID: 2439499 [TBL] [Abstract][Full Text] [Related]
10. Ion pathways in transverse tubules. Quantification of receptors in membranes isolated from frog and rabbit skeletal muscle. Jaimovich E; Donoso P; Liberona JL; Hidalgo C Biochim Biophys Acta; 1986 Feb; 855(1):89-98. PubMed ID: 3002475 [TBL] [Abstract][Full Text] [Related]
11. Dihydropyridine receptors in transverse tubules from normal and dystrophic chicken skeletal muscle. Moro G; Saborido A; Delgado J; Molano F; Megias A J Muscle Res Cell Motil; 1995 Oct; 16(5):529-42. PubMed ID: 8567940 [TBL] [Abstract][Full Text] [Related]
12. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. Chang FC; Hosey MM J Biol Chem; 1988 Dec; 263(35):18929-37. PubMed ID: 2848812 [TBL] [Abstract][Full Text] [Related]
13. The purified Ca2+ antagonist receptor from skeletal muscle: subunit structure, photoaffinity labeling and endogenous protein kinase activity. Tuana BS; Murphy BJ; Yi Q Mol Cell Biochem; 1988; 80(1-2):133-43. PubMed ID: 2845255 [TBL] [Abstract][Full Text] [Related]
14. Isolation of a terminal cisterna protein which may link the dihydropyridine receptor to the junctional foot protein in skeletal muscle. Kim KC; Caswell AH; Talvenheimo JA; Brandt NR Biochemistry; 1990 Oct; 29(39):9281-9. PubMed ID: 2176846 [TBL] [Abstract][Full Text] [Related]
15. Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. Yuan SH; Arnold W; Jorgensen AO J Cell Biol; 1991 Jan; 112(2):289-301. PubMed ID: 1846372 [TBL] [Abstract][Full Text] [Related]
16. [Isolation and characteristics of dihydropyridine calcium antagonist receptor from rabbit skeletal muscles]. Soldatov NM Biokhimiia; 1988 Oct; 53(10):1600-11. PubMed ID: 2852965 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. Sharp AH; Imagawa T; Leung AT; Campbell KP J Biol Chem; 1987 Sep; 262(25):12309-15. PubMed ID: 3040737 [TBL] [Abstract][Full Text] [Related]
18. Albumin is a major protein component of transverse tubule vesicles isolated from skeletal muscle. Knudson CM; Campbell KP J Biol Chem; 1989 Jun; 264(18):10795-8. PubMed ID: 2732247 [TBL] [Abstract][Full Text] [Related]
19. Characterization and ultrastructural localization of a novel 90-kDa protein unique to skeletal muscle junctional sarcoplasmic reticulum. Guo W; Jorgensen AO; Campbell KP J Biol Chem; 1994 Nov; 269(45):28359-65. PubMed ID: 7961775 [TBL] [Abstract][Full Text] [Related]
20. Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. Jorgensen AO; Shen AC; Arnold W; Leung AT; Campbell KP J Cell Biol; 1989 Jul; 109(1):135-47. PubMed ID: 2545725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]