These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 21602348)
1. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. Bertram R; Rigali S; Wood N; Lulko AT; Kuipers OP; Titgemeyer F J Bacteriol; 2011 Jul; 193(14):3525-36. PubMed ID: 21602348 [TBL] [Abstract][Full Text] [Related]
2. The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine. Gaugué I; Oberto J; Putzer H; Plumbridge J PLoS One; 2013; 8(5):e63025. PubMed ID: 23667565 [TBL] [Abstract][Full Text] [Related]
3. NagR Differentially Regulates the Expression of the glmS and nagAB Genes Required for Amino Sugar Metabolism by Streptococcus mutans. Zeng L; Burne RA J Bacteriol; 2015 Nov; 197(22):3533-44. PubMed ID: 26324448 [TBL] [Abstract][Full Text] [Related]
4. Regulation of amino sugar utilization in Bacillus subtilis by the GntR family regulators, NagR and GamR. Gaugué I; Oberto J; Plumbridge J Mol Microbiol; 2014 Apr; 92(1):100-15. PubMed ID: 24673833 [TBL] [Abstract][Full Text] [Related]
5. Structural insight into operator dre-sites recognition and effector binding in the GntR/HutC transcription regulator NagR. Fillenberg SB; Grau FC; Seidel G; Muller YA Nucleic Acids Res; 2015 Jan; 43(2):1283-96. PubMed ID: 25564531 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. Świątek MA; Tenconi E; Rigali S; van Wezel GP J Bacteriol; 2012 Mar; 194(5):1136-44. PubMed ID: 22194457 [TBL] [Abstract][Full Text] [Related]
7. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412 [TBL] [Abstract][Full Text] [Related]
8. Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. Boulanger A; Déjean G; Lautier M; Glories M; Zischek C; Arlat M; Lauber E J Bacteriol; 2010 Mar; 192(6):1487-97. PubMed ID: 20081036 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Ordóñez-Robles M; Rodríguez-García A; Martín JF Microbiol Res; 2018 Dec; 217():14-22. PubMed ID: 30384905 [TBL] [Abstract][Full Text] [Related]
10. Multiple allosteric effectors control the affinity of DasR for its target sites. Tenconi E; Urem M; Świątek-Połatyńska MA; Titgemeyer F; Muller YA; van Wezel GP; Rigali S Biochem Biophys Res Commun; 2015 Aug; 464(1):324-9. PubMed ID: 26123391 [TBL] [Abstract][Full Text] [Related]
11. NagR Cao ZL; Tan TT; Zhang YL; Han L; Hou XY; Ma HY; Cai J Front Microbiol; 2018; 9():1899. PubMed ID: 30254611 [TBL] [Abstract][Full Text] [Related]
12. Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus. Alice AF; Pérez-Martínez G; Sánchez-Rivas C Microbiology (Reading); 2003 Jul; 149(Pt 7):1687-1698. PubMed ID: 12855720 [TBL] [Abstract][Full Text] [Related]
13. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. Alvarez-Añorve LI; Calcagno ML; Plumbridge J J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation. Vogler AP; Lengeler JW Mol Gen Genet; 1989 Oct; 219(1-2):97-105. PubMed ID: 2693951 [TBL] [Abstract][Full Text] [Related]
15. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Rigali S; Nothaft H; Noens EE; Schlicht M; Colson S; Müller M; Joris B; Koerten HK; Hopwood DA; Titgemeyer F; van Wezel GP Mol Microbiol; 2006 Sep; 61(5):1237-51. PubMed ID: 16925557 [TBL] [Abstract][Full Text] [Related]
16. The Nitrogen Regulatory PII Protein (GlnB) and Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699 [TBL] [Abstract][Full Text] [Related]
17. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans. Moye ZD; Burne RA; Zeng L Appl Environ Microbiol; 2014 Aug; 80(16):5053-67. PubMed ID: 24928869 [TBL] [Abstract][Full Text] [Related]
18. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Świątek MA; Urem M; Tenconi E; Rigali S; van Wezel GP Bioengineered; 2012; 3(5):280-5. PubMed ID: 22892576 [TBL] [Abstract][Full Text] [Related]
19. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Liu Y; Zhu Y; Ma W; Shin HD; Li J; Liu L; Du G; Chen J Metab Eng; 2014 Jul; 24():61-9. PubMed ID: 24815549 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. Plumbridge J J Mol Microbiol Biotechnol; 2015; 25(2-3):154-67. PubMed ID: 26159076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]