These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 21602348)
21. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Ma W; Liu Y; Lv X; Li J; Du G; Liu L Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921 [TBL] [Abstract][Full Text] [Related]
22. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Plumbridge JA Mol Microbiol; 1991 Aug; 5(8):2053-62. PubMed ID: 1766379 [TBL] [Abstract][Full Text] [Related]
23. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. Korgaonkar AK; Whiteley M J Bacteriol; 2011 Feb; 193(4):909-17. PubMed ID: 21169497 [TBL] [Abstract][Full Text] [Related]
24. N-acetylglucosamine-Mediated Expression of Afzal M; Shafeeq S; Manzoor I; Henriques-Normark B; Kuipers OP Front Cell Infect Microbiol; 2016; 6():158. PubMed ID: 27900287 [TBL] [Abstract][Full Text] [Related]
26. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon. Plumbridge JA J Bacteriol; 1990 May; 172(5):2728-35. PubMed ID: 2158978 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis. Mirouze N; Bidnenko E; Noirot P; Auger S Microbiologyopen; 2015 Jun; 4(3):423-35. PubMed ID: 25755103 [TBL] [Abstract][Full Text] [Related]
28. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030 [TBL] [Abstract][Full Text] [Related]
29. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580 [TBL] [Abstract][Full Text] [Related]
30. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations. Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132 [TBL] [Abstract][Full Text] [Related]
31. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558 [TBL] [Abstract][Full Text] [Related]
32. Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5'-Terminus Fusion Engineering Leads to Overproduction of N-Acetylglucosamine in Bacillus subtilis. Ma W; Liu Y; Wang Y; Lv X; Li J; Du G; Liu L Biotechnol J; 2019 Mar; 14(3):e1800264. PubMed ID: 30105781 [TBL] [Abstract][Full Text] [Related]
33. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
34. Biocatalytic Production of Glucosamine from Jiang Z; Lv X; Liu Y; Shin HD; Li J; Du G; Liu L J Microbiol Biotechnol; 2018 Nov; 28(11):1850-1858. PubMed ID: 30086621 [TBL] [Abstract][Full Text] [Related]
35. GntR Family Regulator DasR Controls Acetate Assimilation by Directly Repressing the You D; Zhang BQ; Ye BC J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29686136 [TBL] [Abstract][Full Text] [Related]
36. Transcription analysis of the Bacillus subtilis PucR regulon and identification of a cis-acting sequence required for PucR-regulated expression of genes involved in purine catabolism. Beier L; Nygaard P; Jarmer H; Saxild HH J Bacteriol; 2002 Jun; 184(12):3232-41. PubMed ID: 12029039 [TBL] [Abstract][Full Text] [Related]
37. Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Howell A; Dubrac S; Andersen KK; Noone D; Fert J; Msadek T; Devine K Mol Microbiol; 2003 Sep; 49(6):1639-55. PubMed ID: 12950927 [TBL] [Abstract][Full Text] [Related]
38. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus. Yadav V; Panilaitis B; Shi H; Numuta K; Lee K; Kaplan DL PLoS One; 2011; 6(6):e18099. PubMed ID: 21655093 [TBL] [Abstract][Full Text] [Related]
39. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814 [TBL] [Abstract][Full Text] [Related]
40. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms. Zeng L; Farivar T; Burne RA Appl Environ Microbiol; 2016 Jun; 82(12):3671-82. PubMed ID: 27084009 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]