BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21602374)

  • 1. Small-molecule inhibition of choline catabolism in Pseudomonas aeruginosa and other aerobic choline-catabolizing bacteria.
    Fitzsimmons LF; Flemer S; Wurthmann AS; Deker PB; Sarkar IN; Wargo MJ
    Appl Environ Microbiol; 2011 Jul; 77(13):4383-9. PubMed ID: 21602374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.
    Nock AM; Wargo MJ
    J Bacteriol; 2016 Sep; 198(18):2503-14. PubMed ID: 27381916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.
    Wargo MJ
    Appl Environ Microbiol; 2013 Apr; 79(7):2112-20. PubMed ID: 23354714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR.
    Willsey GG; Wargo MJ
    J Bacteriol; 2016 Jan; 198(2):301-10. PubMed ID: 26503852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of l-Carnitine Metabolism in Sinorhizobium meliloti.
    Bazire P; Perchat N; Darii E; Lechaplais C; Salanoubat M; Perret A
    J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30670548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations.
    Fang J; Lovanh N; Alvarez PJ
    Water Res; 2004 May; 38(10):2529-36. PubMed ID: 15159156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
    Wargo MJ; Szwergold BS; Hogan DA
    J Bacteriol; 2008 Apr; 190(8):2690-9. PubMed ID: 17951379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria.
    Burnet MW; Goldmann A; Message B; Drong R; El Amrani A; Loreau O; Slightom J; Tepfer D
    Gene; 2000 Feb; 244(1-2):151-61. PubMed ID: 10689197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the GbdR regulon in Pseudomonas aeruginosa.
    Hampel KJ; LaBauve AE; Meadows JA; Fitzsimmons LF; Nock AM; Wargo MJ
    J Bacteriol; 2014 Jan; 196(1):7-15. PubMed ID: 24097953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbaryl as a Carbon and Nitrogen Source: an Inducible Methylamine Metabolic Pathway at the Biochemical and Molecular Levels in
    Kamini ; Sharma R; Punekar NS; Phale PS
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological activities of the nortropane alkaloid, calystegine B2, and analogs: structure-function relationships.
    Goldmann A; Message B; Tepfer D; Molyneux RJ; Duclos O; Boyer FD; Pan YT; Elbein AD
    J Nat Prod; 1996 Dec; 59(12):1137-42. PubMed ID: 8988598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choline derivatives increase two different acid phosphatases in Rhizobium meliloti and Pseudomonas aeruginosa.
    Lucchini AE; Lisa TA; Domenech CE
    Arch Microbiol; 1990; 153(6):596-9. PubMed ID: 1695086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis).
    Linder T
    Microbiology (Reading); 2014 May; 160(Pt 5):929-940. PubMed ID: 24608175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdenum-dependent degradation of quinoline by Pseudomonas putida Chin IK and other aerobic bacteria.
    Blaschke M; Kretzer A; Schäfer C; Nagel M; Andreesen JR
    Arch Microbiol; 1991; 155(2):164-9. PubMed ID: 2059099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida.
    Galvão TC; de Lorenzo V; Cánovas D
    Mol Microbiol; 2006 Dec; 62(6):1643-54. PubMed ID: 17116241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive choline transport in Pseudomonas aeruginosa.
    Lucchesi GI; Pallotti C; Lisa AT; Domenech CE
    FEMS Microbiol Lett; 1998 May; 162(1):123-6. PubMed ID: 9595672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes.
    López-Lara IM; Geiger O
    J Biotechnol; 2001 Oct; 91(2-3):211-21. PubMed ID: 11566392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of hydroxyproline catabolism in Sinorhizobium meliloti.
    White CE; Gavina JM; Morton R; Britz-McKibbin P; Finan TM
    Mol Microbiol; 2012 Sep; 85(6):1133-47. PubMed ID: 22804907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
    Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI
    BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway.
    Wilderman PJ; Vasil AI; Martin WE; Murphy RC; Vasil ML
    J Bacteriol; 2002 Sep; 184(17):4792-9. PubMed ID: 12169604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.