These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21602385)

  • 1. FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme A ligase essential for degradation of C-24 branched sterol side chains.
    Wilbrink MH; Petrusma M; Dijkhuizen L; van der Geize R
    Appl Environ Microbiol; 2011 Jul; 77(13):4455-64. PubMed ID: 21602385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of ltp3 and ltp4, essential for C24-branched chain sterol-side-chain degradation in Rhodococcus rhodochrous DSM 43269.
    Wilbrink MH; van der Geize R; Dijkhuizen L
    Microbiology (Reading); 2012 Dec; 158(Pt 12):3054-3062. PubMed ID: 23059973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplicity of 3-Ketosteroid-9α-Hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids.
    Petrusma M; Hessels G; Dijkhuizen L; van der Geize R
    J Bacteriol; 2011 Aug; 193(15):3931-40. PubMed ID: 21642460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation.
    Petrusma M; van der Geize R; Dijkhuizen L
    Antonie Van Leeuwenhoek; 2014 Jul; 106(1):157-72. PubMed ID: 24846050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis.
    Wrońska N; Brzostek A; Szewczyk R; Soboń A; Dziadek J; Lisowska K
    Molecules; 2016 May; 21(5):. PubMed ID: 27164074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1.
    Rosłoniec KZ; Wilbrink MH; Capyk JK; Mohn WW; Ostendorf M; van der Geize R; Dijkhuizen L; Eltis LD
    Mol Microbiol; 2009 Dec; 74(5):1031-43. PubMed ID: 19843222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism.
    Casabon I; Swain K; Crowe AM; Eltis LD; Mohn WW
    J Bacteriol; 2014 Feb; 196(3):579-87. PubMed ID: 24244004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9alpha-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity.
    Petrusma M; Dijkhuizen L; van der Geize R
    Appl Environ Microbiol; 2009 Aug; 75(16):5300-7. PubMed ID: 19561185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis.
    Capyk JK; Casabon I; Gruninger R; Strynadka NC; Eltis LD
    J Biol Chem; 2011 Nov; 286(47):40717-24. PubMed ID: 21987574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB.
    van der Geize R; Hessels GI; Nienhuis-Kuiper M; Dijkhuizen L
    Appl Environ Microbiol; 2008 Dec; 74(23):7197-203. PubMed ID: 18836008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4.
    Guevara G; Heras LFL; Perera J; Llorens JMN
    J Steroid Biochem Mol Biol; 2017 Sep; 172():176-187. PubMed ID: 28642093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1.
    van der Geize R; Hessels GI; van Gerwen R; van der Meijden P; Dijkhuizen L
    Mol Microbiol; 2002 Aug; 45(4):1007-18. PubMed ID: 12180920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of novel acyl coenzyme A dehydrogenases involved in bacterial steroid degradation.
    Ruprecht A; Maddox J; Stirling AJ; Visaggio N; Seah SY
    J Bacteriol; 2015 Apr; 197(8):1360-7. PubMed ID: 25645564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificities and conformational flexibility of 3-ketosteroid 9α-hydroxylases.
    Penfield JS; Worrall LJ; Strynadka NC; Eltis LD
    J Biol Chem; 2014 Sep; 289(37):25523-36. PubMed ID: 25049233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
    Bragin EY; Shtratnikova VY; Dovbnya DV; Schelkunov MI; Pekov YA; Malakho SG; Egorova OV; Ivashina TV; Sokolov SL; Ashapkin VV; Donova MV
    J Steroid Biochem Mol Biol; 2013 Nov; 138():41-53. PubMed ID: 23474435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural features in the KshA terminal oxygenase protein that determine substrate preference of 3-ketosteroid 9α-hydroxylase enzymes.
    Petrusma M; Dijkhuizen L; van der Geize R
    J Bacteriol; 2012 Jan; 194(1):115-21. PubMed ID: 22020644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes on the transformation of AD to 9α-OH-AD by Rhodococcus rhodochrous DSM43269.
    Liu Y; Shen Y; Qiao Y; Su L; Li C; Wang M
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1303-11. PubMed ID: 27377798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of acyl-coenzyme A synthetases involved in mycobacterial steroid side-chain catabolism and molecular design: synthesis of an anti-mycobacterial agent.
    Niu Y; Ge F; Yang Y; Ren Y; Li W; Chen G; Wen D; Liu F; Xiong L
    3 Biotech; 2019 May; 9(5):169. PubMed ID: 30997306
    [