These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21602618)

  • 1. Fabrication of a nanostructure thermal property measurement platform.
    Harris CT; Martinez JA; Shaner EA; Huang JY; Swartzentruber BS; Sullivan JP; Chen G
    Nanotechnology; 2011 Jul; 22(27):275308. PubMed ID: 21602618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope.
    Xu TT; Ning ZY; Shi TW; Fu MQ; Wang JY; Chen Q
    Nanotechnology; 2014 Jun; 25(22):225702. PubMed ID: 24830433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.
    Wingert MC; Chen ZC; Kwon S; Xiang J; Chen R
    Rev Sci Instrum; 2012 Feb; 83(2):024901. PubMed ID: 22380117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A four-probe thermal transport measurement method for nanostructures.
    Kim J; Ou E; Sellan DP; Shi L
    Rev Sci Instrum; 2015 Apr; 86(4):044901. PubMed ID: 25933883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope.
    Wei X; Chen Q; Peng L; Cui R; Li Y
    Ultramicroscopy; 2010 Feb; 110(3):182-9. PubMed ID: 19962243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of nanobelts and nanotubes measured by in situ TEM.
    Wang ZL
    Microsc Microanal; 2004 Feb; 10(1):158-66. PubMed ID: 15306081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ TEM electromechanical testing of nanowires and nanotubes.
    Espinosa HD; Bernal RA; Filleter T
    Small; 2012 Nov; 8(21):3233-52. PubMed ID: 22903735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral heat flow distribution and defect-dependent thermal resistance in an individual silicon nanowire.
    Lee SY; Lee WY; Thong JT; Kim GS; Lee SK
    Nanotechnology; 2016 Mar; 27(11):115402. PubMed ID: 26878139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and electric measurements of nanostructures inside transmission electron microscope.
    Chen Q; Peng LM
    Ultramicroscopy; 2011 Jun; 111(7):948-54. PubMed ID: 21664554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic investigation of Bi₂Te₃ nanowires-a microfabricated thermoelectric characterization platform for measuring the thermoelectric and structural properties of single nanowires.
    Wang Z; Kojda D; Peranio N; Kroener M; Mitdank R; Toellner W; Nielsch K; Fischer SF; Gutsch S; Zacharias M; Eibl O; Woias P
    Nanotechnology; 2015 Mar; 26(12):125707. PubMed ID: 25743098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a surface conductivity measurement system for ultrahigh vacuum transmission electron microscope.
    Minoda H; Hatano K; Yazawa H
    Rev Sci Instrum; 2009 Nov; 80(11):113702. PubMed ID: 19947732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-probe measurements of the in-plane thermoelectric properties of nanofilms.
    Mavrokefalos A; Pettes MT; Zhou F; Shi L
    Rev Sci Instrum; 2007 Mar; 78(3):034901. PubMed ID: 17411207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule-based gold nanowires and nanowire arrays.
    Zhou JC; Gao Y; Martinez-Molares AA; Jing X; Yan D; Lau J; Hamasaki T; Ozkan CS; Ozkan M; Hu E; Dunn B
    Small; 2008 Sep; 4(9):1507-15. PubMed ID: 18752207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures.
    Long R; Chen J; Lim JH; Wiley JB; Zhou W
    Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires.
    Sojo-Gordillo JM; Kaur Y; Tachikawa S; Alayo N; Salleras M; Forrer N; Fonseca L; Morata A; Tarancón A; Zardo I
    Nanoscale Horiz; 2024 Jun; 9(7):1200-1210. PubMed ID: 38767571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated suspended island platform for the measurement of in-plane thermal conductivity of thin films and nanostructured materials with consideration of contact resistance.
    Alaie S; Goettler DF; Abbas K; Su MF; Reinke CM; El-Kady I; Leseman ZC
    Rev Sci Instrum; 2013 Oct; 84(10):105003. PubMed ID: 24182154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of planar defects in ZnO nanobelts and nanowires.
    Ding Y; Wang ZL
    Micron; 2009 Apr; 40(3):335-42. PubMed ID: 19081262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.