BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 2160267)

  • 1. Functional consequences of the proteolytic removal of regulatory serines from the nonhelical tailpiece of Acanthamoeba myosin II.
    Sathyamoorthy V; Atkinson MA; Bowers B; Korn ED
    Biochemistry; 1990 Apr; 29(15):3793-7. PubMed ID: 2160267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative dependence of the actin-activated Mg2+-ATPase activity of Acanthamoeba myosin II on the extent of filament phosphorylation.
    Atkinson MA; Lambooy PK; Korn ED
    J Biol Chem; 1989 Mar; 264(7):4127-32. PubMed ID: 2521858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filament formation and actin-activated ATPase activity are abolished by proteolytic removal of a small peptide from the tip of the tail of the heavy chain of Acanthamoeba myosin II.
    Kuznicki J; Côté GP; Bowers B; Korn ED
    J Biol Chem; 1985 Feb; 260(3):1967-72. PubMed ID: 3155741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the actin-activated ATPase activity of Acanthamoeba myosin II by copolymerization with phosphorylated and dephosphorylated peptides derived from the carboxyl-terminal end of the heavy chain.
    Ganguly C; Atkinson MA; Attri AK; Sathyamoorthy V; Bowers B; Korn ED
    J Biol Chem; 1990 Jun; 265(17):9993-8. PubMed ID: 2141027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the actin-binding sites of Acanthamoeba myosin IB and effect of limited proteolysis on its actin-activated Mg2+-ATPase activity.
    Brzeska H; Lynch TJ; Korn ED
    J Biol Chem; 1988 Jan; 263(1):427-35. PubMed ID: 2961746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece.
    Liu X; Hong MS; Shu S; Yu S; Korn ED
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):E33-40. PubMed ID: 23248285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the actin-activated ATPase and in vitro motility activities of monomeric and filamentous Acanthamoeba myosin II.
    Ganguly C; Baines IC; Korn ED; Sellers J
    J Biol Chem; 1992 Oct; 267(29):20900-4. PubMed ID: 1400404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of three phosphorylation sites on each heavy chain of Acanthamoeba myosin II.
    Côté GP; Collins JH; Korn ED
    J Biol Chem; 1981 Dec; 256(24):12811-6. PubMed ID: 6118366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic activity and filament assembly of Acanthamoeba myosin II are regulated by adjacent domains at the end of the tail.
    Atkinson MA; Appella E; Corigliano-Murphy MA; Korn ED
    FEBS Lett; 1988 Jul; 234(2):435-8. PubMed ID: 2968922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2.
    Liu X; Lee DY; Cai S; Yu S; Shu S; Levine RL; Korn ED
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):E23-32. PubMed ID: 23248278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited tryptic digestion of Acanthamoeba myosin IA abolishes regulation of actin-activated ATPase activity by heavy chain phosphorylation.
    Lynch TJ; Brzeska H; Korn ED
    J Biol Chem; 1987 Oct; 262(28):13842-9. PubMed ID: 2958454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural difference between filaments of phosphorylated and dephosphorylated Acanthamoeba myosin II revealed by electric birefringence.
    Rau DC; Ganguly C; Korn ED
    J Biol Chem; 1993 Mar; 268(7):4612-24. PubMed ID: 8444836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotides increase the internal flexibility of filaments of dephosphorylated Acanthamoeba myosin II.
    Redowicz MJ; Korn ED; Rau DC
    J Biol Chem; 1996 May; 271(21):12401-7. PubMed ID: 8647844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acanthamoeba myosin I heavy chain kinase is activated by phosphatidylserine-enhanced phosphorylation.
    Brzeska H; Lynch TJ; Korn ED
    J Biol Chem; 1990 Mar; 265(7):3591-4. PubMed ID: 2154483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a third isoform of myosin I from Acanthamoeba castellanii.
    Lynch TJ; Brzeska H; Miyata H; Korn ED
    J Biol Chem; 1989 Nov; 264(32):19333-9. PubMed ID: 2530229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATPase activities and actin-binding properties of subfragments of Acanthamoeba myosin IA.
    Lynch TJ; Albanesi JP; Korn ED; Robinson EA; Bowers B; Fujisaki H
    J Biol Chem; 1986 Dec; 261(36):17156-62. PubMed ID: 2946692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin-activated Mg-ATPase activity of Dictyostelium myosin II. Effects of filament formation and heavy chain phosphorylation.
    Truong T; Medley QG; Côté GP
    J Biol Chem; 1992 May; 267(14):9767-72. PubMed ID: 1533639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of actin and phosphorylation on the tryptic cleavage pattern of Acanthamoeba myosin IA.
    Brzeska H; Lynch TJ; Korn ED
    J Biol Chem; 1989 Jun; 264(17):10243-50. PubMed ID: 2524493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interdependence of factors affecting the actin-activated ATPase activity of myosin II from Acanthamoeba castellanii.
    Kuznicki J; Korn ED
    J Biol Chem; 1984 Jul; 259(14):9302-7. PubMed ID: 6235224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of Acanthamoeba myosin I heavy chain kinase as determined with synthetic peptides.
    Brzeska H; Lynch TJ; Martin B; Corigliano-Murphy A; Korn ED
    J Biol Chem; 1990 Sep; 265(27):16138-44. PubMed ID: 2168881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.