BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 2160270)

  • 1. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes.
    Hyslop PA; Morel B; Sauerheber RD
    Biochemistry; 1990 Jan; 29(4):1025-38. PubMed ID: 2160270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles.
    Schroeder F; Nemecz G; Gratton E; Barenholz Y; Thompson TE
    Biophys Chem; 1988 Oct; 32(1):57-72. PubMed ID: 3233314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol dynamics in membranes.
    Yeagle PL; Albert AD; Boesze-Battaglia K; Young J; Frye J
    Biophys J; 1990 Mar; 57(3):413-24. PubMed ID: 2306492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol oxidase susceptibility of cholesterol and 5-androsten-3 beta-ol in pure sterol monolayers and in mixed monolayers containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.
    Slotte JP
    Biochim Biophys Acta; 1992 Feb; 1124(1):23-8. PubMed ID: 1543722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of stigmastanol and stigmastanyl-phosphorylcholine, two plasma cholesterol lowering substances, on synthetic phospholipid membranes. A 2H- and 31P-NMR study.
    Habiger RG; Cassal JM; Kempen HJ; Seelig J
    Biochim Biophys Acta; 1992 Jan; 1103(1):69-76. PubMed ID: 1730022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetime distributions of diphenylhexatriene-labeled phosphatidylcholine as a tool for the study of phospholipid-cholesterol interactions.
    Kalb E; Paltauf F; Hermetter A
    Biophys J; 1989 Dec; 56(6):1245-53. PubMed ID: 2611334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers.
    Okayama A; Hoshino T; Wada K; Takahashi H
    Chem Phys Lipids; 2024 Mar; 259():105376. PubMed ID: 38325710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The organisation of cholesterol and ergosterol in lipid bilayers based on studies using non-perturbing fluorescent sterol probes.
    Rogers J; Lee AG; Wilton DC
    Biochim Biophys Acta; 1979 Mar; 552(1):23-37. PubMed ID: 435495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes.
    Lönnfors M; Engberg O; Peterson BR; Slotte JP
    Langmuir; 2012 Jan; 28(1):648-55. PubMed ID: 22128897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterol ordering effects and permeability regulation in phosphatidylcholine bilayers. A comparison of ESR spin-probe data from oriented multilamellae and dispersions.
    Butler KW; Smith IC
    Can J Biochem; 1978 Feb; 56(2):117-22. PubMed ID: 204400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect.
    Kumar VV; Malewicz B; Baumann WJ
    Biophys J; 1989 Apr; 55(4):789-92. PubMed ID: 2720071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycerophospholipid polyunsaturation modulates resveratrol action on biomimetic membranes.
    Vitkova V; Hazarosova R; Valkova I; Momchilova A; Staneva G
    Colloids Surf B Biointerfaces; 2024 Jun; 238():113922. PubMed ID: 38678790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state.
    Shin YK; Moscicki JK; Freed JH
    Biophys J; 1990 Mar; 57(3):445-59. PubMed ID: 2155032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes.
    Nezil FA; Bloom M
    Biophys J; 1992 May; 61(5):1176-83. PubMed ID: 1600079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers.
    Frey S; Tamm LK
    Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved fluorescence investigation of membrane cholesterol heterogeneity and exchange.
    Nemecz G; Schroeder F
    Biochemistry; 1988 Oct; 27(20):7740-9. PubMed ID: 3207705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of phospholipid unsaturation on the cholesterol distribution in membranes.
    Pasenkiewicz-Gierula M; Subczynski WK; Kusumi A
    Biochimie; 1991 Oct; 73(10):1311-6. PubMed ID: 1664241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of the phospholipid bilayer and the length of the cholesterol molecule in membrane structure.
    Suckling KE; Blair HA; Boyd GS; Craig IF; Malcolm BR
    Biochim Biophys Acta; 1979 Feb; 551(1):10-21. PubMed ID: 427146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbamyl phosphatidylcholine--cholesterol interactions in unilamellar vesicles.
    Bhakuni V; Gupta CM
    Biochim Biophys Acta; 1989 Jul; 982(2):216-22. PubMed ID: 2752024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance studies in liposomes: effects of steroids on lecithin fatty acyl chain mobility.
    Ahmad P; Mellors A
    J Membr Biol; 1978 Jul; 41(3):235-47. PubMed ID: 671524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.