These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21602825)

  • 1. Tunable pKa values and the basis of opposite charge selectivities in nicotinic-type receptors.
    Cymes GD; Grosman C
    Nature; 2011 May; 474(7352):526-30. PubMed ID: 21602825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatics and the ion selectivity of ligand-gated channels.
    Adcock C; Smith GR; Sansom MS
    Biophys J; 1998 Sep; 75(3):1211-22. PubMed ID: 9726923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the pKa values of basic and acidic side chains in ion channels using electrophysiological recordings: a robust approach to an elusive problem.
    Cymes GD; Grosman C
    Proteins; 2011 Dec; 79(12):3485-93. PubMed ID: 21744391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels.
    Moorhouse AJ; Keramidas A; Zaykin A; Schofield PR; Barry PH
    J Gen Physiol; 2002 May; 119(5):411-25. PubMed ID: 11981021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Ionizable Side Chains.
    Cymes GD; Grosman C
    Adv Exp Med Biol; 2015; 869():5-23. PubMed ID: 26381938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity.
    Keramidas A; Moorhouse AJ; Pierce KD; Schofield PR; Barry PH
    J Gen Physiol; 2002 May; 119(5):393-410. PubMed ID: 11981020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors.
    Harpole TJ; Grosman C
    Biophys J; 2019 May; 116(9):1667-1681. PubMed ID: 31005237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis of the charge selectivity of nicotinic acetylcholine receptor and related ligand-gated ion channels.
    Corringer PJ; Bertrand S; Galzi JL; Devillers-ThiƩry A; Changeux JP; Bertrand D
    Novartis Found Symp; 1999; 225():215-24; discussion 224-30. PubMed ID: 10472058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the gap between structural models of nicotinic receptor superfamily ion channels and their corresponding functional states.
    Gonzalez-Gutierrez G; Grosman C
    J Mol Biol; 2010 Nov; 403(5):693-705. PubMed ID: 20863833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the elusive link between amino acid sequence and charge selectivity in pentameric ligand-gated ion channels.
    Cymes GD; Grosman C
    Proc Natl Acad Sci U S A; 2016 Nov; 113(45):E7106-E7115. PubMed ID: 27791102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of molluscan nicotinic acetylcholine receptor (nAChR) subunits involved in formation of cation- and anion-selective nAChRs.
    van Nierop P; Keramidas A; Bertrand S; van Minnen J; Gouwenberg Y; Bertrand D; Smit AB
    J Neurosci; 2005 Nov; 25(46):10617-26. PubMed ID: 16291934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold.
    Gonzalez-Gutierrez G; Grosman C
    J Gen Physiol; 2015 Jul; 146(1):15-36. PubMed ID: 26078054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charged residues at the 2' position of human GABAC rho 1 receptors invert ion selectivity and influence open state probability.
    Carland JE; Moorhouse AJ; Barry PH; Johnston GA; Chebib M
    J Biol Chem; 2004 Dec; 279(52):54153-60. PubMed ID: 15485818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular tuning of fast gating in pentameric ligand-gated ion channels.
    Grutter T; de Carvalho LP; Dufresne V; Taly A; Edelstein SJ; Changeux JP
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18207-12. PubMed ID: 16319224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-opening mechanism of the nicotinic acetylcholine receptor evinced by proton transfer.
    Cymes GD; Grosman C
    Nat Struct Mol Biol; 2008 Apr; 15(4):389-96. PubMed ID: 18376414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A triad of residues is functionally transferrable between 5-HT
    Mosesso R; Dougherty DA
    J Biol Chem; 2018 Feb; 293(8):2903-2914. PubMed ID: 29298898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-gated ion channels: mechanisms underlying ion selectivity.
    Keramidas A; Moorhouse AJ; Schofield PR; Barry PH
    Prog Biophys Mol Biol; 2004 Oct; 86(2):161-204. PubMed ID: 15288758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desensitization of neurotransmitter-gated ion channels during high-frequency stimulation: a comparative study of Cys-loop, AMPA and purinergic receptors.
    Papke D; Gonzalez-Gutierrez G; Grosman C
    J Physiol; 2011 Apr; 589(Pt 7):1571-85. PubMed ID: 21300749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies of the M2 transmembrane segment of the glycine receptor: models of the open pore structure and current-voltage characteristics.
    Cheng MH; Cascio M; Coalson RD
    Biophys J; 2005 Sep; 89(3):1669-80. PubMed ID: 15951389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission.
    Unwin N
    Philos Trans R Soc Lond B Biol Sci; 2000 Dec; 355(1404):1813-29. PubMed ID: 11205343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.