These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21603054)

  • 1. ON THE GENERALISED FANT EQUATION.
    Howe MS; McGowan RS
    J Sound Vib; 2011 Jun; 330(13):3123-3140. PubMed ID: 21603054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PRODUCTION OF SOUND BY UNSTEADY THROTTLING OF FLOW INTO A RESONANT CAVITY, WITH APPLICATION TO VOICED SPEECH.
    Howe MS; McGowan RS
    J Fluid Mech; 2011 Apr; 672():428-450. PubMed ID: 21666824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the ventricular folds on a voice source with specified vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2010 Mar; 127(3):1519-27. PubMed ID: 20329852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ON THE SINGLE-MASS MODEL OF THE VOCAL FOLDS.
    Howe MS; McGowan RS
    Fluid Dyn Res; 2010 Jan; 42(1):15001. PubMed ID: 20419082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Education in acoustics and speech science using vocal-tract models.
    Arai T
    J Acoust Soc Am; 2012 Mar; 131(3):2444-54. PubMed ID: 22423792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
    Schickhofer L; Mihaescu M
    J Biomech; 2020 Jan; 99():109484. PubMed ID: 31761432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source-tract interaction with prescribed vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2012 Apr; 131(4):2999-3016. PubMed ID: 22501076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the role of glottis-interior sources in the production of voiced sound.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2012 Feb; 131(2):1391-400. PubMed ID: 22352512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach.
    Lodermeyer A; Bagheri E; Kniesburges S; Näger C; Probst J; Döllinger M; Becker S
    J Acoust Soc Am; 2021 Nov; 150(5):3485. PubMed ID: 34852620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-mass model of the vocal folds: negative differential resistance oscillation.
    Conrad WA; McQueen DM
    J Acoust Soc Am; 1988 Jun; 83(6):2453-8. PubMed ID: 3411036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI.
    Schickhofer L; Malinen J; Mihaescu M
    J Acoust Soc Am; 2019 Apr; 145(4):2049. PubMed ID: 31046346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsteady flow through in-vitro models of the glottis.
    Hofmans GC; Groot G; Ranucci M; Graziani G; Hirschberg A
    J Acoust Soc Am; 2003 Mar; 113(3):1658-75. PubMed ID: 12656399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical assessment of unsteady aerodynamic effects in phonation.
    Krane MH; Wei T
    J Acoust Soc Am; 2006 Sep; 120(3):1578-88. PubMed ID: 17004480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ANALYSIS OF FLOW-STRUCTURE COUPLING IN A MECHANICAL MODEL OF THE VOCAL FOLDS AND THE SUBGLOTTAL SYSTEM.
    Howe MS; McGowan RS
    J Fluids Struct; 2009 Nov; 25(8):1299-1317. PubMed ID: 20161450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.
    Galindo GE; Peterson SD; Erath BD; Castro C; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2017 Sep; 60(9):2452-2471. PubMed ID: 28837719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds.
    Erath BD; Peterson SD; Weiland KS; Plesniak MW; Zañartu M
    PLoS One; 2019; 14(7):e0219914. PubMed ID: 31344084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voicing produced by a constant velocity lung source.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2013 Apr; 133(4):2340-9. PubMed ID: 23556600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.